QGen / app.py
DevBM's picture
using llama3 for option generation
b38adec verified
raw
history blame
31 kB
import streamlit as st
from transformers import T5ForConditionalGeneration, T5Tokenizer
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, LlamaForCausalLM
import spacy
import nltk
from sklearn.feature_extraction.text import TfidfVectorizer
from rake_nltk import Rake
import pandas as pd
from fpdf import FPDF
import wikipediaapi
from functools import lru_cache
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('brown')
from nltk.tokenize import sent_tokenize, word_tokenize
from nltk.tag import pos_tag
nltk.download('wordnet')
from nltk.corpus import wordnet
import random
import sense2vec
from wordcloud import WordCloud
import matplotlib.pyplot as plt
import json
import os
from sentence_transformers import SentenceTransformer, util
import textstat
from spellchecker import SpellChecker
from transformers import pipeline
import re
import pymupdf
import uuid
import time
import asyncio
import aiohttp
import torch
from dotenv import load_dotenv
print("***************************************************************")
st.set_page_config(
page_icon='cyclone',
page_title="Question Generator",
initial_sidebar_state="auto",
menu_items={
"About" : "Hi this our project."
}
)
st.set_option('deprecation.showPyplotGlobalUse',False)
class QuestionGenerationError(Exception):
"""Custom exception for question generation errors."""
pass
# Initialize Wikipedia API with a user agent
user_agent = 'QGen/1.2'
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
def get_session_id():
if 'session_id' not in st.session_state:
st.session_state.session_id = str(uuid.uuid4())
return st.session_state.session_id
def initialize_state(session_id):
if 'session_states' not in st.session_state:
st.session_state.session_states = {}
if session_id not in st.session_state.session_states:
st.session_state.session_states[session_id] = {
'generated_questions': [],
# add other state variables as needed
}
return st.session_state.session_states[session_id]
def get_state(session_id):
return st.session_state.session_states[session_id]
def set_state(session_id, key, value):
st.session_state.session_states[session_id][key] = value
@st.cache_resource
def load_model(modelname):
model_name = modelname
model = T5ForConditionalGeneration.from_pretrained(model_name)
tokenizer = T5Tokenizer.from_pretrained(model_name)
return model, tokenizer
# Load Spacy Model
@st.cache_resource
def load_nlp_models():
nlp = spacy.load("en_core_web_lg")
s2v = sense2vec.Sense2Vec().from_disk('s2v_old')
return nlp, s2v
# Load Quality Assurance Models
@st.cache_resource
def load_qa_models():
# Initialize BERT model for sentence similarity
similarity_model = SentenceTransformer('all-MiniLM-L6-v2')
spell = SpellChecker()
return similarity_model, spell
@st.cache_resource
def load_llm_model():
model_name = "meta-llama/Meta-Llama-3-8B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = LlamaForCausalLM.from_pretrained(model_name,torch_dtype=torch.float16, device_map="auto")
return tokenizer, model
with st.sidebar:
select_model = st.selectbox("Select Model", ("T5-large","T5-small"))
if select_model == "T5-large":
modelname = "DevBM/t5-large-squad"
elif select_model == "T5-small":
modelname = "AneriThakkar/flan-t5-small-finetuned"
nlp, s2v = load_nlp_models()
similarity_model, spell = load_qa_models()
context_model = similarity_model
sentence_model = similarity_model
model, tokenizer = load_model(modelname)
# llm_tokenizer, llm_model = load_llm_model()
llm_tokenizer, llm_model = "meta-llama/Meta-Llama-3-8B-Instruct", "meta-llama/Meta-Llama-3-8B-Instruct"
pipe = pipeline("text-generation", model=llm_model, tokenizer=llm_tokenizer, max_new_tokens=200)
# Info Section
def display_info():
st.sidebar.title("Information")
st.sidebar.markdown("""
### Question Generator System
This system is designed to generate questions based on the provided context. It uses various NLP techniques and models to:
- Extract keywords from the text
- Map keywords to sentences
- Generate questions
- Provide multiple choice options
- Assess the quality of generated questions
#### Key Features:
- **Keyword Extraction:** Combines RAKE, TF-IDF, and spaCy for comprehensive keyword extraction.
- **Question Generation:** Utilizes a pre-trained T5 model for generating questions.
- **Options Generation:** Creates contextually relevant multiple-choice options.
- **Question Assessment:** Scores questions based on relevance, complexity, and spelling correctness.
- **Feedback Collection:** Allows users to rate the generated questions and provides statistics on feedback.
#### Customization Options:
- Number of beams for question generation
- Context window size for mapping keywords to sentences
- Number of questions to generate
- Additional display elements (context, answer, options, entity link, QA scores)
#### Outputs:
- Generated questions with multiple-choice options
- Download options for CSV and PDF formats
- Visualization of overall scores
""")
def get_pdf_text(pdf_file):
doc = pymupdf.open(stream=pdf_file.read(), filetype="pdf")
text = ""
for page_num in range(doc.page_count):
page = doc.load_page(page_num)
text += page.get_text()
return text
def save_feedback(question, answer, rating, options, context):
feedback_file = 'question_feedback.json'
if os.path.exists(feedback_file):
with open(feedback_file, 'r') as f:
feedback_data = json.load(f)
else:
feedback_data = []
tpl = {
'question' : question,
'answer' : answer,
'context' : context,
'options' : options,
'rating' : rating,
}
# feedback_data[question] = rating
feedback_data.append(tpl)
with open(feedback_file, 'w') as f:
json.dump(feedback_data, f)
# Function to clean text
def clean_text(text):
text = re.sub(r"[^\x00-\x7F]", " ", text)
text = re.sub(f"[\n]"," ", text)
return text
# Function to create text chunks
def segment_text(text, max_segment_length=700, batch_size=7):
sentences = sent_tokenize(text)
segments = []
current_segment = ""
for sentence in sentences:
if len(current_segment) + len(sentence) <= max_segment_length:
current_segment += sentence + " "
else:
segments.append(current_segment.strip())
current_segment = sentence + " "
if current_segment:
segments.append(current_segment.strip())
# Create batches
batches = [segments[i:i + batch_size] for i in range(0, len(segments), batch_size)]
return batches
# Function to extract keywords using combined techniques
def extract_keywords(text, extract_all):
try:
doc = nlp(text)
spacy_keywords = set([ent.text for ent in doc.ents])
spacy_entities = spacy_keywords
print(f"\n\nSpacy Entities: {spacy_entities} \n\n")
# Use Only Spacy Entities
if extract_all is False:
return list(spacy_entities)
# Use RAKE
rake = Rake()
rake.extract_keywords_from_text(text)
rake_keywords = set(rake.get_ranked_phrases())
print(f"\n\nRake Keywords: {rake_keywords} \n\n")
# Use spaCy for NER and POS tagging
spacy_keywords.update([token.text for token in doc if token.pos_ in ["NOUN", "PROPN", "VERB", "ADJ"]])
print(f"\n\nSpacy Keywords: {spacy_keywords} \n\n")
# Use TF-IDF
vectorizer = TfidfVectorizer(stop_words='english')
X = vectorizer.fit_transform([text])
tfidf_keywords = set(vectorizer.get_feature_names_out())
print(f"\n\nTFIDF Entities: {tfidf_keywords} \n\n")
# Combine all keywords
combined_keywords = rake_keywords.union(spacy_keywords).union(tfidf_keywords)
return list(combined_keywords)
except Exception as e:
raise QuestionGenerationError(f"Error in keyword extraction: {str(e)}")
def get_similar_words_sense2vec(word, n=3):
# Try to find the word with its most likely part-of-speech
word_with_pos = word + "|NOUN"
if word_with_pos in s2v:
similar_words = s2v.most_similar(word_with_pos, n=n)
return [word.split("|")[0] for word, _ in similar_words]
# If not found, try without POS
if word in s2v:
similar_words = s2v.most_similar(word, n=n)
return [word.split("|")[0] for word, _ in similar_words]
return []
def get_synonyms(word, n=3):
synonyms = []
for syn in wordnet.synsets(word):
for lemma in syn.lemmas():
if lemma.name() != word and lemma.name() not in synonyms:
synonyms.append(lemma.name())
if len(synonyms) == n:
return synonyms
return synonyms
def get_fallback_options(answer, context, n=3):
options = [answer]
# Add contextually relevant words using a pre-trained model
context_embedding = context_model.encode(context)
answer_embedding = context_model.encode(answer)
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
# Compute similarity scores and sort context words
similarity_scores = [util.pytorch_cos_sim(context_model.encode(word), answer_embedding).item() for word in context_words]
sorted_context_words = [word for _, word in sorted(zip(similarity_scores, context_words), reverse=True)]
options.extend(sorted_context_words[:n])
# Try to get similar words based on sense2vec
similar_words = get_similar_words_sense2vec(answer, n)
options.extend(similar_words)
# If we don't have enough options, try synonyms
if len(options) < n + 1:
synonyms = get_synonyms(answer, n - len(options) + 1)
options.extend(synonyms)
# If we still don't have enough options, extract other entities from the context
if len(options) < n + 1:
doc = nlp(context)
entities = [ent.text for ent in doc.ents if ent.text.lower() != answer.lower()]
options.extend(entities[:n - len(options) + 1])
# If we still need more options, add some random words from the context
if len(options) < n + 1:
context_words = [token.text for token in nlp(context) if token.is_alpha and token.text.lower() != answer.lower()]
options.extend(random.sample(context_words, min(n - len(options) + 1, len(context_words))))
print(f"\n\nAll Possible Options: {options}\n\n")
# Ensure we have the correct number of unique options
options = list(dict.fromkeys(options))[:n+1]
# Shuffle the options
random.shuffle(options)
return options
def get_semantic_similarity(word1, word2):
embeddings = sentence_model.encode([word1, word2])
return util.pytorch_cos_sim(embeddings[0], embeddings[1]).item()
def ensure_grammatical_consistency(question, answer, option):
question_pos = pos_tag(word_tokenize(question))
answer_pos = pos_tag(word_tokenize(answer))
option_pos = pos_tag(word_tokenize(option))
# Check if the answer and option have the same part of speech
if answer_pos[-1][1] != option_pos[-1][1]:
return False
# Check if the option fits grammatically in the question
question_template = question.replace(answer, "PLACEHOLDER")
option_question = question_template.replace("PLACEHOLDER", option)
option_question_pos = pos_tag(word_tokenize(option_question))
return question_pos == option_question_pos
def get_word_type(word):
doc = nlp(word)
return doc[0].pos_
def generate_text_with_llama(prompt):
full_prompt = f"""[INST] {prompt} [/INST]"""
result = pipe(prompt, temperature=0.7, do_sample=True)[0]['generated_text']
# Extract the generated part after the prompt
# return result.split('[/INST]')[-1].strip()
return result
async def generate_options_with_llm(answer, context, question, n=4):
prompt = f"""Given the following context, question, and correct answer, generate {n-1} incorrect but plausible answer options. The options should be:
1. Contextually related to the given context
2. Grammatically consistent with the question
3. Different from the correct answer
4. Not explicitly mentioned in the given context
Context: {context}
Question: {question}
Correct Answer: {answer}
Provide the options in a comma-separated list.
"""
try:
response = await asyncio.to_thread(generate_text_with_llama, prompt)
options = [option.strip() for option in response.split(',')]
options = [option for option in options if option.lower() != answer.lower()]
print(f"\n\nLLM Options are: {options}\n\n")
return options[:n-1] # Ensure we only return n-1 options
except Exception as e:
st.error(f"Error generating options with LLM: {e}")
return []
async def generate_options_async(answer, context, question, n=4):
options = [answer]
# Generate options using the language model
llm_options = await generate_options_with_llm(answer, context, question, n)
options.extend(llm_options)
# If we don't have enough options, fall back to previous methods
if len(options) < n:
semantic_options = await generate_semantic_options(answer, context, question, n - len(options))
options.extend(semantic_options)
# If we still don't have enough options, use the fallback method
while len(options) < n:
fallback_options = await get_fallback_options(answer, context)
for option in fallback_options:
if option not in options and ensure_grammatical_consistency(question, answer, option):
options.append(option)
if len(options) == n:
break
# Shuffle the options
random.shuffle(options)
return options
async def generate_semantic_options(answer, context, question, n=4):
try:
options = [answer]
# Get context words
doc = nlp(context)
context_words = [token.text for token in doc if token.is_alpha and token.text.lower() != answer.lower()]
# Get answer type
answer_type = get_word_type(answer)
print(answer_type,"\n")
# Get semantically similar words
similar_words = []
for word in context_words:
if get_word_type(word) == answer_type:
similarity = get_semantic_similarity(answer, word)
if 0.2 < similarity < 0.8: # Adjust these thresholds as needed
similar_words.append((word, similarity))
# Sort by similarity (descending) and take top n-1
similar_words.sort(key=lambda x: x[1], reverse=True)
top_similar_words = [word for word, _ in similar_words[:n-1]]
# Ensure grammatical consistency
consistent_options = []
for word in top_similar_words:
if ensure_grammatical_consistency(question, answer, word):
consistent_options.append(word)
if len(consistent_options) == n-1:
break
options.extend(consistent_options)
# If we don't have enough options, fall back to original method
while len(options) < n:
fallback_options = get_fallback_options(answer, context, 3)
for option in fallback_options:
if option not in options and ensure_grammatical_consistency(question, answer, option):
options.append(option)
break
# Shuffle the options
random.shuffle(options)
print(options)
st.write("All possibel options are: ", options, "\n")
return options
except Exception as e:
raise QuestionGenerationError(f"Error in generating options: {str(e)}")
# Function to map keywords to sentences with customizable context window size
def map_keywords_to_sentences(text, keywords, context_window_size):
sentences = sent_tokenize(text)
keyword_sentence_mapping = {}
print(f"\n\nSentences: {sentences}\n\n")
for keyword in keywords:
for i, sentence in enumerate(sentences):
if keyword in sentence:
# Combine current sentence with surrounding sentences for context
start = max(0, i - context_window_size)
end = min(len(sentences), i + context_window_size + 1)
context = ' '.join(sentences[start:end])
if keyword not in keyword_sentence_mapping:
keyword_sentence_mapping[keyword] = context
else:
keyword_sentence_mapping[keyword] += ' ' + context
return keyword_sentence_mapping
# Function to perform entity linking using Wikipedia API
@lru_cache(maxsize=128)
def entity_linking(keyword):
page = wiki_wiki.page(keyword)
if page.exists():
return page.fullurl
return None
async def generate_question_async(context, answer, num_beams):
try:
input_text = f"<context> {context} <answer> {answer}"
print(f"\n{input_text}\n")
input_ids = tokenizer.encode(input_text, return_tensors='pt')
outputs = await asyncio.to_thread(model.generate, input_ids, num_beams=num_beams, early_stopping=True, max_length=250)
question = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(f"\n{question}\n")
return question
except Exception as e:
raise QuestionGenerationError(f"Error in question generation: {str(e)}")
# Function to generate questions using beam search
async def generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords):
try:
batches = segment_text(text)
keywords = extract_keywords(text, extract_all_keywords)
all_questions = []
progress_bar = st.progress(0)
status_text = st.empty()
for i, batch in enumerate(batches):
status_text.text(f"Processing batch {i+1} of {len(batches)}...")
batch_questions = await process_batch(batch, keywords, context_window_size, num_beams)
all_questions.extend(batch_questions)
progress_bar.progress((i + 1) / len(batches))
if len(all_questions) >= num_questions:
break
progress_bar.empty()
status_text.empty()
return all_questions[:num_questions]
except QuestionGenerationError as e:
st.error(f"An error occurred during question generation: {str(e)}")
return []
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
return []
async def process_batch(batch, keywords, context_window_size, num_beams, use_llm_options):
questions = []
for text in batch:
keyword_sentence_mapping = map_keywords_to_sentences(text, keywords, context_window_size)
for keyword, context in keyword_sentence_mapping.items():
question = await generate_question_async(context, keyword, num_beams)
if use_llm_options:
options = await generate_options_async(keyword, context, question)
else:
options =await generate_semantic_options(keyword, context, question)
overall_score, relevance_score, complexity_score, spelling_correctness = assess_question_quality(context, question, keyword)
if overall_score >= 0.5:
questions.append({
"question": question,
"context": context,
"answer": keyword,
"options": options,
"overall_score": overall_score,
"relevance_score": relevance_score,
"complexity_score": complexity_score,
"spelling_correctness": spelling_correctness,
})
return questions
# Function to export questions to CSV
def export_to_csv(data):
# df = pd.DataFrame(data, columns=["Context", "Answer", "Question", "Options"])
df = pd.DataFrame(data)
# csv = df.to_csv(index=False,encoding='utf-8')
csv = df.to_csv(index=False)
return csv
# Function to export questions to PDF
def export_to_pdf(data):
pdf = FPDF()
pdf.add_page()
pdf.set_font("Arial", size=12)
for item in data:
pdf.multi_cell(0, 10, f"Context: {item['context']}")
pdf.multi_cell(0, 10, f"Question: {item['question']}")
pdf.multi_cell(0, 10, f"Answer: {item['answer']}")
pdf.multi_cell(0, 10, f"Options: {', '.join(item['options'])}")
pdf.multi_cell(0, 10, f"Overall Score: {item['overall_score']:.2f}")
pdf.ln(10)
return pdf.output(dest='S').encode('latin-1')
def display_word_cloud(generated_questions):
word_frequency = {}
for question in generated_questions:
words = question.split()
for word in words:
word_frequency[word] = word_frequency.get(word, 0) + 1
wordcloud = WordCloud(width=800, height=400, background_color='white').generate_from_frequencies(word_frequency)
plt.figure(figsize=(10, 5))
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis('off')
st.pyplot()
def assess_question_quality(context, question, answer):
# Assess relevance using cosine similarity
context_doc = nlp(context)
question_doc = nlp(question)
relevance_score = context_doc.similarity(question_doc)
# Assess complexity using token length (as a simple metric)
complexity_score = min(len(question_doc) / 20, 1) # Normalize to 0-1
# Assess Spelling correctness
misspelled = spell.unknown(question.split())
spelling_correctness = 1 - (len(misspelled) / len(question.split())) # Normalize to 0-1
# Calculate overall score (you can adjust weights as needed)
overall_score = (
0.4 * relevance_score +
0.4 * complexity_score +
0.2 * spelling_correctness
)
return overall_score, relevance_score, complexity_score, spelling_correctness
def main():
load_dotenv()
# Streamlit interface
st.title(":blue[Question Generator System]")
session_id = get_session_id()
state = initialize_state(session_id)
with st.sidebar:
show_info = st.toggle('Show Info',True)
if show_info:
display_info()
st.subheader("Customization Options")
# Customization options
input_type = st.radio("Select Input Preference", ("Text Input","Upload PDF"))
with st.expander("Choose the Additional Elements to show"):
show_context = st.checkbox("Context",True)
show_answer = st.checkbox("Answer",True)
show_options = st.checkbox("Options",False)
show_entity_link = st.checkbox("Entity Link For Wikipedia",True)
show_qa_scores = st.checkbox("QA Score",False)
num_beams = st.slider("Select number of beams for question generation", min_value=2, max_value=10, value=2)
context_window_size = st.slider("Select context window size (number of sentences before and after)", min_value=1, max_value=5, value=1)
num_questions = st.slider("Select number of questions to generate", min_value=1, max_value=1000, value=5)
use_llm_for_options = st.toggle("Use AI for Advanced option generation", False)
col1, col2 = st.columns(2)
with col1:
extract_all_keywords = st.toggle("Extract Max Keywords",value=False)
with col2:
enable_feedback_mode = st.toggle("Enable Feedback Mode",False)
text = None
if input_type == "Text Input":
text = st.text_area("Enter text here:", value="Joe Biden, the current US president is on a weak wicket going in for his reelection later this November against former President Donald Trump.", help="Enter or paste your text here")
elif input_type == "Upload PDF":
file = st.file_uploader("Upload PDF Files")
if file is not None:
try:
text = get_pdf_text(file)
except Exception as e:
st.error(f"Error reading PDF file: {str(e)}")
text = None
if text:
text = clean_text(text)
generate_questions_button = st.button("Generate Questions")
# st.markdown('<span aria-label="Generate questions button">Above is the generate questions button</span>', unsafe_allow_html=True)
# if generate_questions_button:
if generate_questions_button and text:
start_time = time.time()
with st.spinner("Generating questions..."):
try:
state['generated_questions'] = asyncio.run(generate_questions_async(text, num_questions, context_window_size, num_beams, extract_all_keywords, use_llm_for_options))
if not state['generated_questions']:
st.warning("No questions were generated. The text might be too short or lack suitable content.")
else:
st.success(f"Successfully generated {len(state['generated_questions'])} questions!")
except QuestionGenerationError as e:
st.error(f"An error occurred during question generation: {str(e)}")
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
print("\n\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n\n")
data = get_state(session_id)
print(data)
end_time = time.time()
print(f"Time Taken to generate: {end_time-start_time}")
set_state(session_id, 'generated_questions', state['generated_questions'])
# sort question based on their quality score
state['generated_questions'] = sorted(state['generated_questions'],key = lambda x: x['overall_score'], reverse=True)
# Display generated questions
if state['generated_questions']:
st.header("Generated Questions:",divider='blue')
for i, q in enumerate(state['generated_questions']):
st.subheader(body=f":orange[Q{i+1}:] {q['question']}")
if show_context is True:
st.write(f"**Context:** {q['context']}")
if show_answer is True:
st.write(f"**Answer:** {q['answer']}")
if show_options is True:
st.write(f"**Options:**")
for j, option in enumerate(q['options']):
st.write(f"{chr(65+j)}. {option}")
if show_entity_link is True:
linked_entity = entity_linking(q['answer'])
if linked_entity:
st.write(f"**Entity Link:** {linked_entity}")
if show_qa_scores is True:
m1,m2,m3,m4 = st.columns([1.7,1,1,1])
m1.metric("Overall Quality Score", value=f"{q['overall_score']:,.2f}")
m2.metric("Relevance Score", value=f"{q['relevance_score']:,.2f}")
m3.metric("Complexity Score", value=f"{q['complexity_score']:,.2f}")
m4.metric("Spelling Correctness", value=f"{q['spelling_correctness']:,.2f}")
# q['context'] = st.text_area(f"Edit Context {i+1}:", value=q['context'], key=f"context_{i}")
if enable_feedback_mode:
q['question'] = st.text_input(f"Edit Question {i+1}:", value=q['question'], key=f"question_{i}")
q['rating'] = st.select_slider(f"Rate this question (1-5)", options=[1, 2, 3, 4, 5], key=f"rating_{i}")
if st.button(f"Submit Feedback for Question {i+1}", key=f"submit_{i}"):
save_feedback(q['question'], q['answer'], q['rating'], q['options'], q['context'])
st.success(f"Feedback submitted for Question {i+1}")
st.write("---")
# Export buttons
# if st.session_state.generated_questions:
if state['generated_questions']:
with st.sidebar:
csv_data = export_to_csv(state['generated_questions'])
st.download_button(label="Download CSV", data=csv_data, file_name='questions.csv', mime='text/csv')
pdf_data = export_to_pdf(state['generated_questions'])
st.download_button(label="Download PDF", data=pdf_data, file_name='questions.pdf', mime='application/pdf')
with st.expander("View Visualizations"):
questions = [tpl['question'] for tpl in state['generated_questions']]
overall_scores = [tpl['overall_score'] for tpl in state['generated_questions']]
st.subheader('WordCloud of Questions',divider='rainbow')
display_word_cloud(questions)
st.subheader('Overall Scores',divider='violet')
overall_scores = pd.DataFrame(overall_scores,columns=['Overall Scores'])
st.line_chart(overall_scores)
# View Feedback Statistics
with st.expander("View Feedback Statistics"):
feedback_file = 'question_feedback.json'
if os.path.exists(feedback_file):
with open(feedback_file, 'r') as f:
feedback_data = json.load(f)
st.subheader("Feedback Statistics")
# Calculate average rating
ratings = [feedback['rating'] for feedback in feedback_data]
avg_rating = sum(ratings) / len(ratings) if ratings else 0
st.write(f"Average Question Rating: {avg_rating:.2f}")
# Show distribution of ratings
rating_counts = {i: ratings.count(i) for i in range(1, 6)}
st.bar_chart(rating_counts)
# Show some highly rated questions
st.subheader("Highly Rated Questions")
sorted_feedback = sorted(feedback_data, key=lambda x: x['rating'], reverse=True)
top_questions = sorted_feedback[:5]
for feedback in top_questions:
st.write(f"Question: {feedback['question']}")
st.write(f"Answer: {feedback['answer']}")
st.write(f"Rating: {feedback['rating']}")
st.write("---")
else:
st.write("No feedback data available yet.")
print("********************************************************************************")
if __name__ == '__main__':
try:
main()
except Exception as e:
st.error(f"An unexpected error occurred: {str(e)}")
st.error("Please try refreshing the page. If the problem persists, contact support.")