Spaces:
Sleeping
Sleeping
using spacy for option generation
Browse files
app.py
CHANGED
@@ -24,9 +24,6 @@ nlp = spacy.load("en_core_web_sm")
|
|
24 |
user_agent = 'QGen/1.0 ([email protected])'
|
25 |
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
|
26 |
|
27 |
-
# Load pre-trained word vectors (this may take a while)
|
28 |
-
word_vectors = KeyedVectors.load_word2vec_format('vectors/GoogleNews-vectors-negative300.bin', binary=True)
|
29 |
-
|
30 |
def load_model():
|
31 |
model_name = "DevBM/t5-large-squad"
|
32 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
@@ -63,29 +60,23 @@ def extract_keywords(text):
|
|
63 |
|
64 |
return list(combined_keywords)
|
65 |
|
66 |
-
#
|
67 |
-
|
68 |
-
sentences = sent_tokenize(text)
|
69 |
-
keyword_sentence_mapping = {}
|
70 |
-
for keyword in keywords:
|
71 |
-
for i, sentence in enumerate(sentences):
|
72 |
-
if keyword in sentence:
|
73 |
-
# Combine current sentence with surrounding sentences for context
|
74 |
-
start = max(0, i - context_window_size)
|
75 |
-
end = min(len(sentences), i + context_window_size + 1)
|
76 |
-
context = ' '.join(sentences[start:end])
|
77 |
-
if keyword not in keyword_sentence_mapping:
|
78 |
-
keyword_sentence_mapping[keyword] = context
|
79 |
-
else:
|
80 |
-
keyword_sentence_mapping[keyword] += ' ' + context
|
81 |
-
return keyword_sentence_mapping
|
82 |
|
83 |
def get_similar_words(word, n=3):
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
def get_synonyms(word, n=3):
|
91 |
synonyms = []
|
@@ -100,7 +91,7 @@ def get_synonyms(word, n=3):
|
|
100 |
def generate_options(answer, context, n=3):
|
101 |
options = [answer]
|
102 |
|
103 |
-
# Try to get similar words based on word
|
104 |
similar_words = get_similar_words(answer, n)
|
105 |
options.extend(similar_words)
|
106 |
|
@@ -128,6 +119,24 @@ def generate_options(answer, context, n=3):
|
|
128 |
|
129 |
return options
|
130 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
# Function to perform entity linking using Wikipedia API
|
132 |
@lru_cache(maxsize=128)
|
133 |
def entity_linking(keyword):
|
|
|
24 |
user_agent = 'QGen/1.0 ([email protected])'
|
25 |
wiki_wiki = wikipediaapi.Wikipedia(user_agent= user_agent,language='en')
|
26 |
|
|
|
|
|
|
|
27 |
def load_model():
|
28 |
model_name = "DevBM/t5-large-squad"
|
29 |
model = T5ForConditionalGeneration.from_pretrained(model_name)
|
|
|
60 |
|
61 |
return list(combined_keywords)
|
62 |
|
63 |
+
# Load spaCy model (medium-sized model with word vectors)
|
64 |
+
nlp = spacy.load("en_core_web_md")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
def get_similar_words(word, n=3):
|
67 |
+
# Get the vector for the word
|
68 |
+
word_vector = nlp(word).vector
|
69 |
+
|
70 |
+
# Find similar words
|
71 |
+
similar_words = []
|
72 |
+
for w in nlp.vocab:
|
73 |
+
if w.has_vector and w.is_lower and w.is_alpha and w.text != word:
|
74 |
+
similarity = nlp(w.text).similarity(nlp(word))
|
75 |
+
similar_words.append((w.text, similarity))
|
76 |
+
|
77 |
+
# Sort by similarity and return top n
|
78 |
+
similar_words.sort(key=lambda x: x[1], reverse=True)
|
79 |
+
return [word for word, _ in similar_words[:n]]
|
80 |
|
81 |
def get_synonyms(word, n=3):
|
82 |
synonyms = []
|
|
|
91 |
def generate_options(answer, context, n=3):
|
92 |
options = [answer]
|
93 |
|
94 |
+
# Try to get similar words based on word vectors
|
95 |
similar_words = get_similar_words(answer, n)
|
96 |
options.extend(similar_words)
|
97 |
|
|
|
119 |
|
120 |
return options
|
121 |
|
122 |
+
# Function to map keywords to sentences with customizable context window size
|
123 |
+
def map_keywords_to_sentences(text, keywords, context_window_size):
|
124 |
+
sentences = sent_tokenize(text)
|
125 |
+
keyword_sentence_mapping = {}
|
126 |
+
for keyword in keywords:
|
127 |
+
for i, sentence in enumerate(sentences):
|
128 |
+
if keyword in sentence:
|
129 |
+
# Combine current sentence with surrounding sentences for context
|
130 |
+
start = max(0, i - context_window_size)
|
131 |
+
end = min(len(sentences), i + context_window_size + 1)
|
132 |
+
context = ' '.join(sentences[start:end])
|
133 |
+
if keyword not in keyword_sentence_mapping:
|
134 |
+
keyword_sentence_mapping[keyword] = context
|
135 |
+
else:
|
136 |
+
keyword_sentence_mapping[keyword] += ' ' + context
|
137 |
+
return keyword_sentence_mapping
|
138 |
+
|
139 |
+
|
140 |
# Function to perform entity linking using Wikipedia API
|
141 |
@lru_cache(maxsize=128)
|
142 |
def entity_linking(keyword):
|