Spaces:
Sleeping
Sleeping
File size: 1,391 Bytes
fd80405 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 |
import streamlit as st
from transformers import pipeline
from PyPDF2 import PdfReader
import PyPDF2
import fitz
import os
import nltk
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def main():
st.title('Question Generator from PDFs')
pipe = pipeline(
task = 'text2text-generation',
model = 'ramsrigouthamg/t5_squad_v1'
)
file = st.file_uploader(label='Upload',accept_multiple_files=True)
pr = st.button(label='Start')
if pr:
st.write('Hi')
raw_text = get_pdf_text(file)
sentences = nltk.sent_tokenize(text=raw_text)
# st.write(sts)
# for i in sentences:
# st.write(i)
questions = []
st.subheader("Generated Questions are: ")
s = pipe(sentences)
for i in s:
questions.append(i['generated_text'][10:])
st.write(i['generated_text'][10:])
if st.toggle(label='Show Pipeline Output'):
st.write(s)
if st.toggle(label='Show Questions list'):
st.write(questions)
# for i in sts:
# x = pipe(i)
# questions.append(x)
# st.write(x)
if __name__ == '__main__':
main() |