Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,118 +1,118 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import numpy as np
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
-
from sklearn.model_selection import train_test_split
|
7 |
-
from sklearn.svm import SVC
|
8 |
-
from sklearn.linear_model import LogisticRegression
|
9 |
-
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
|
10 |
-
from sklearn.metrics import accuracy_score, classification_report
|
11 |
-
from transformers import BertTokenizer, BertForSequenceClassification
|
12 |
-
import torch
|
13 |
-
|
14 |
-
@st.cache_data
|
15 |
-
def load_data():
|
16 |
-
return pd.read_csv('IMDB Dataset.csv')
|
17 |
-
|
18 |
-
if 'models' not in st.session_state:
|
19 |
-
st.session_state.models = {}
|
20 |
-
if 'reports' not in st.session_state:
|
21 |
-
st.session_state.reports = {}
|
22 |
-
if 'accuracy' not in st.session_state:
|
23 |
-
st.session_state.accuracy = {}
|
24 |
-
|
25 |
-
df = load_data()
|
26 |
-
|
27 |
-
df['sentiment'] = df['sentiment'].map({'positive': 1, 'negative': 0})
|
28 |
-
|
29 |
-
X = df['review']
|
30 |
-
y = df['sentiment']
|
31 |
-
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
32 |
-
|
33 |
-
if not st.session_state.models:
|
34 |
-
vectorizer = TfidfVectorizer()
|
35 |
-
X_train_tfidf = vectorizer.fit_transform(X_train)
|
36 |
-
|
37 |
-
# models
|
38 |
-
models = {
|
39 |
-
"SVM": SVC(kernel='linear'),
|
40 |
-
"Logistic Regression": LogisticRegression(max_iter=1000),
|
41 |
-
"Random Forest": RandomForestClassifier(n_estimators=10),
|
42 |
-
"Gradient Boosting": GradientBoostingClassifier()
|
43 |
-
}
|
44 |
-
|
45 |
-
for name, model in models.items():
|
46 |
-
model.fit(X_train_tfidf, y_train)
|
47 |
-
st.session_state.models[name] = model
|
48 |
-
X_test_tfidf = vectorizer.transform(X_test)
|
49 |
-
y_pred = model.predict(X_test_tfidf)
|
50 |
-
st.session_state.accuracy[name] = accuracy_score(y_test, y_pred)
|
51 |
-
report = classification_report(y_test, y_pred, output_dict=True)
|
52 |
-
st.session_state.reports[name] = pd.DataFrame(report).transpose()
|
53 |
-
|
54 |
-
st.session_state.bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
55 |
-
st.session_state.bert_model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
56 |
-
|
57 |
-
train_encodings = st.session_state.bert_tokenizer(list(X_train), truncation=True, padding=True, return_tensors='pt')
|
58 |
-
train_labels = torch.tensor(y_train.values)
|
59 |
-
|
60 |
-
train_dataset = torch.utils.data.TensorDataset(train_encodings['input_ids'], train_encodings['attention_mask'], train_labels)
|
61 |
-
|
62 |
-
training_args = torch.optim.AdamW(st.session_state.bert_model.parameters(), lr=1e-5)
|
63 |
-
st.session_state.bert_model.train()
|
64 |
-
|
65 |
-
for epoch in range(1):
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
st.session_state.bert_model.eval()
|
76 |
-
test_encodings = st.session_state.bert_tokenizer(list(X_test), truncation=True, padding=True, return_tensors='pt')
|
77 |
-
with torch.no_grad():
|
78 |
-
|
79 |
-
predictions = torch.argmax(outputs.logits, dim=1).numpy()
|
80 |
-
st.session_state.accuracy["BERT"] = accuracy_score(y_test, predictions)
|
81 |
-
report = classification_report(y_test, predictions, output_dict=True)
|
82 |
-
st.session_state.reports["BERT"] = pd.DataFrame(report).transpose()
|
83 |
-
|
84 |
-
if st.session_state.accuracy:
|
85 |
-
|
86 |
-
plt.figure(figsize=(10, 5))
|
87 |
-
plt.bar(st.session_state.accuracy.keys(), st.session_state.accuracy.values(), color=['blue', 'orange', 'green','red', 'purple'])
|
88 |
-
plt.ylabel('Accuracy')
|
89 |
-
plt.title('Model Accuracy Comparison')
|
90 |
-
st.pyplot(plt)
|
91 |
-
|
92 |
-
for name, report_df in st.session_state.reports.items():
|
93 |
-
st.header(f"{name}",divider='orange')
|
94 |
-
st.dataframe(report_df)
|
95 |
-
|
96 |
-
st.header("Manual Tryouts")
|
97 |
-
user_input = st.text_area("Review", "")
|
98 |
-
|
99 |
-
if st.button("Predict"):
|
100 |
-
if user_input:
|
101 |
-
user_input_tfidf = vectorizer.transform([user_input])
|
102 |
-
|
103 |
-
predictions = {}
|
104 |
-
for name, model in st.session_state.models.items():
|
105 |
-
prediction = model.predict(user_input_tfidf)
|
106 |
-
predictions[name] = "Positive" if prediction[0] == 1 else "Negative"
|
107 |
-
|
108 |
-
inputs = st.session_state.bert_tokenizer(user_input, return_tensors='pt', truncation=True, padding=True)
|
109 |
-
with torch.no_grad():
|
110 |
-
|
111 |
-
bert_prediction = torch.argmax(output.logits, dim=1).item()
|
112 |
-
predictions["BERT"] = "Positive" if bert_prediction == 1 else "Negative"
|
113 |
-
|
114 |
-
st.write("Predicted Sentiment:")
|
115 |
-
for name in predictions:
|
116 |
-
st.write(f"{name}: **{predictions[name]}**")
|
117 |
-
else:
|
118 |
st.write("Please enter a review.")
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
6 |
+
from sklearn.model_selection import train_test_split
|
7 |
+
from sklearn.svm import SVC
|
8 |
+
from sklearn.linear_model import LogisticRegression
|
9 |
+
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
|
10 |
+
from sklearn.metrics import accuracy_score, classification_report
|
11 |
+
from transformers import BertTokenizer, BertForSequenceClassification
|
12 |
+
import torch
|
13 |
+
|
14 |
+
@st.cache_data
|
15 |
+
def load_data():
|
16 |
+
return pd.read_csv('IMDB Dataset.csv')
|
17 |
+
|
18 |
+
if 'models' not in st.session_state:
|
19 |
+
st.session_state.models = {}
|
20 |
+
if 'reports' not in st.session_state:
|
21 |
+
st.session_state.reports = {}
|
22 |
+
if 'accuracy' not in st.session_state:
|
23 |
+
st.session_state.accuracy = {}
|
24 |
+
|
25 |
+
df = load_data()
|
26 |
+
|
27 |
+
df['sentiment'] = df['sentiment'].map({'positive': 1, 'negative': 0})
|
28 |
+
|
29 |
+
X = df['review']
|
30 |
+
y = df['sentiment']
|
31 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
32 |
+
|
33 |
+
if not st.session_state.models:
|
34 |
+
vectorizer = TfidfVectorizer()
|
35 |
+
X_train_tfidf = vectorizer.fit_transform(X_train)
|
36 |
+
|
37 |
+
# models
|
38 |
+
models = {
|
39 |
+
# "SVM": SVC(kernel='linear'),
|
40 |
+
"Logistic Regression": LogisticRegression(max_iter=1000),
|
41 |
+
# "Random Forest": RandomForestClassifier(n_estimators=10),
|
42 |
+
# "Gradient Boosting": GradientBoostingClassifier()
|
43 |
+
}
|
44 |
+
|
45 |
+
for name, model in models.items():
|
46 |
+
model.fit(X_train_tfidf, y_train)
|
47 |
+
st.session_state.models[name] = model
|
48 |
+
X_test_tfidf = vectorizer.transform(X_test)
|
49 |
+
y_pred = model.predict(X_test_tfidf)
|
50 |
+
st.session_state.accuracy[name] = accuracy_score(y_test, y_pred)
|
51 |
+
report = classification_report(y_test, y_pred, output_dict=True)
|
52 |
+
st.session_state.reports[name] = pd.DataFrame(report).transpose()
|
53 |
+
|
54 |
+
# st.session_state.bert_tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
|
55 |
+
# st.session_state.bert_model = BertForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2)
|
56 |
+
|
57 |
+
# train_encodings = st.session_state.bert_tokenizer(list(X_train), truncation=True, padding=True, return_tensors='pt')
|
58 |
+
# train_labels = torch.tensor(y_train.values)
|
59 |
+
|
60 |
+
# train_dataset = torch.utils.data.TensorDataset(train_encodings['input_ids'], train_encodings['attention_mask'], train_labels)
|
61 |
+
|
62 |
+
# training_args = torch.optim.AdamW(st.session_state.bert_model.parameters(), lr=1e-5)
|
63 |
+
# st.session_state.bert_model.train()
|
64 |
+
|
65 |
+
# for epoch in range(1):
|
66 |
+
# for batch in train_dataset:
|
67 |
+
# inputs = batch[0], batch[1]
|
68 |
+
# labels = batch[2]
|
69 |
+
# outputs = st.session_state.bert_model(*inputs, labels=labels)
|
70 |
+
# loss = outputs.loss
|
71 |
+
# loss.backward()
|
72 |
+
# training_args.step()
|
73 |
+
# training_args.zero_grad()
|
74 |
+
|
75 |
+
# st.session_state.bert_model.eval()
|
76 |
+
# test_encodings = st.session_state.bert_tokenizer(list(X_test), truncation=True, padding=True, return_tensors='pt')
|
77 |
+
# with torch.no_grad():
|
78 |
+
# outputs = st.session_state.bert_model(test_encodings['input_ids'], test_encodings['attention_mask'])
|
79 |
+
# predictions = torch.argmax(outputs.logits, dim=1).numpy()
|
80 |
+
# st.session_state.accuracy["BERT"] = accuracy_score(y_test, predictions)
|
81 |
+
# report = classification_report(y_test, predictions, output_dict=True)
|
82 |
+
# st.session_state.reports["BERT"] = pd.DataFrame(report).transpose()
|
83 |
+
|
84 |
+
if st.session_state.accuracy:
|
85 |
+
|
86 |
+
plt.figure(figsize=(10, 5))
|
87 |
+
plt.bar(st.session_state.accuracy.keys(), st.session_state.accuracy.values(), color=['blue', 'orange', 'green','red', 'purple'])
|
88 |
+
plt.ylabel('Accuracy')
|
89 |
+
plt.title('Model Accuracy Comparison')
|
90 |
+
st.pyplot(plt)
|
91 |
+
|
92 |
+
for name, report_df in st.session_state.reports.items():
|
93 |
+
st.header(f"{name}",divider='orange')
|
94 |
+
st.dataframe(report_df)
|
95 |
+
|
96 |
+
st.header("Manual Tryouts")
|
97 |
+
user_input = st.text_area("Review", "")
|
98 |
+
|
99 |
+
if st.button("Predict"):
|
100 |
+
if user_input:
|
101 |
+
user_input_tfidf = vectorizer.transform([user_input])
|
102 |
+
|
103 |
+
predictions = {}
|
104 |
+
for name, model in st.session_state.models.items():
|
105 |
+
prediction = model.predict(user_input_tfidf)
|
106 |
+
predictions[name] = "Positive" if prediction[0] == 1 else "Negative"
|
107 |
+
|
108 |
+
# inputs = st.session_state.bert_tokenizer(user_input, return_tensors='pt', truncation=True, padding=True)
|
109 |
+
# with torch.no_grad():
|
110 |
+
# output = st.session_state.bert_model(inputs['input_ids'], inputs['attention_mask'])
|
111 |
+
# bert_prediction = torch.argmax(output.logits, dim=1).item()
|
112 |
+
# predictions["BERT"] = "Positive" if bert_prediction == 1 else "Negative"
|
113 |
+
|
114 |
+
st.write("Predicted Sentiment:")
|
115 |
+
for name in predictions:
|
116 |
+
st.write(f"{name}: **{predictions[name]}**")
|
117 |
+
else:
|
118 |
st.write("Please enter a review.")
|