File size: 1,757 Bytes
d67da2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import streamlit as st
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForCausalLM
from transformers import T5Tokenizer, T5ForConditionalGeneration

st.subheader('Pipe5: Text-To-Text Generation -> Que. Generation',divider='orange')

if st.toggle(label='Show Pipe5'):
    models = [
        'google/flan-t5-base',
        'meta-llama/Meta-Llama-3-8B',
        'meta-llama/Meta-Llama-3-8B-Instruct'
    ]
    model_name = st.selectbox(
        label='Select Model',
        options=models,
        placeholder='google/vit-base-patch16-224',
    )
    if model_name == models[0]:
        tokenizer = T5Tokenizer.from_pretrained(model_name)
        model = T5ForConditionalGeneration.from_pretrained(model_name)
    else:
        tokenizer = AutoTokenizer.from_pretrained(model_name)
        model = AutoModelForCausalLM.from_pretrained(model_name)

    input_text = st.text_area(label='Enter the text from which question is to be generated:',value='Bruce Wayne is the Batman.')
    input_text = 'Generate a question from this: ' + input_text
    input_ids = tokenizer(input_text, return_tensors='pt').input_ids


    outputs = model.generate(input_ids)
    output_text = tokenizer.decode(outputs[0][1:len(outputs[0])-1])
    if st.checkbox(label='Show Tokenized output'):
        st.write(outputs)
    st.write("Output is:")
    st.write(f"{output_text}")
    if st.toggle(label='Access model unrestricted'):
        input_text = st.text_area('Enter text')
        input_ids = tokenizer(input_text, return_tensors='pt').input_ids
        outputs = model.generate(input_ids)
        st.write(tokenizer.decode(outputs[0]))
        st.write(outputs)