import streamlit as st from transformers import pipeline from PIL import Image st.header(':red[2]',divider='violet') st.subheader('Hotdog or Not Hotdog?') pipeline = pipeline(task='image-classification', model='julien-c/hotdog-not-hotdog') file_name = st.file_uploader("Upload a hotdog candidate image") if file_name is not None: col1, col2 = st.columns(2) image = Image.open(file_name) col1.image(image, use_column_width=True) predictions = pipeline(image) col2.header("Probabilities") for p in predictions: col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")