TrashcanAI / app.py
csabakecskemeti's picture
Update app.py
996b1d6 verified
raw
history blame
2.98 kB
import gradio as gr
import requests, json
public_ip = '71.202.66.108'
model = 'llama3.1:latest' #You can replace the model name if needed
context = []
import gradio as gr
# ollama_serve = f"http://{mac_pro_ip}:11434/api/generate"
ollama_serve = f"http://{public_ip}:11434/api/generate"
#Call Ollama API
def generate(prompt, context, top_k, top_p, temp):
r = requests.post(ollama_serve,
json={
'model': model,
'prompt': prompt,
'context': context,
'options':{
'top_k': top_k,
'temperature':top_p,
'top_p': temp
}
},
stream=True)
r.raise_for_status()
response = ""
for line in r.iter_lines():
body = json.loads(line)
response_part = body.get('response', '')
print(response_part)
if 'error' in body:
raise Exception(body['error'])
response += response_part
if body.get('done', False):
context = body.get('context', [])
return response, context
def chat(input, chat_history, top_k, top_p, temp):
chat_history = chat_history or []
global context
output, context = generate(input, context, top_k, top_p, temp)
chat_history.append((input, output))
return chat_history, chat_history
#the first history in return history, history is meant to update the
#chatbot widget, and the second history is meant to update the state
#(which is used to maintain conversation history across interactions)
#########################Gradio Code##########################
block = gr.Blocks()
with block:
gr.Markdown("""<h1><center> Trashcan AI </center></h1>
""")
gr.Markdown("""<h3><center> LLama3.1 hosted on a 2013 "Trashcan" Mac Pro with ollama </center></h3>
""")
chatbot = gr.Chatbot()
message = gr.Textbox(placeholder="Type here")
state = gr.State()
with gr.Row():
top_k = gr.Slider(0.0,100.0, label="top_k", value=40, info="Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. (Default: 40)")
top_p = gr.Slider(0.0,1.0, label="top_p", value=0.9, info=" Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. (Default: 0.9)")
temp = gr.Slider(0.0,2.0, label="temperature", value=0.8, info="The temperature of the model. Increasing the temperature will make the model answer more creatively. (Default: 0.8)")
submit = gr.Button("SEND")
submit.click(chat, inputs=[message, state, top_k, top_p, temp], outputs=[chatbot, state])
if __name__ == "__main__":
block.launch()