Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,29 +2,28 @@ import os
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
-
from transformers import pipeline
|
6 |
from diffusers import DiffusionPipeline
|
7 |
from pyannote.audio import Pipeline as PyannotePipeline
|
8 |
from dia.model import Dia
|
9 |
from dac.utils import load_model as load_dac_model
|
10 |
|
11 |
-
#
|
12 |
HF_TOKEN = os.environ["HF_TOKEN"]
|
13 |
-
device_map = "auto"
|
14 |
|
15 |
-
|
16 |
rvq = load_dac_model(tag="latest", model_type="44khz")
|
17 |
rvq.eval()
|
18 |
-
if torch.cuda.is_available():
|
19 |
-
rvq = rvq.to("cuda")
|
20 |
|
21 |
-
|
22 |
vad_pipe = PyannotePipeline.from_pretrained(
|
23 |
"pyannote/voice-activity-detection",
|
24 |
use_auth_token=HF_TOKEN
|
25 |
)
|
26 |
|
27 |
-
|
28 |
ultravox_pipe = pipeline(
|
29 |
model="fixie-ai/ultravox-v0_4",
|
30 |
trust_remote_code=True,
|
@@ -32,13 +31,13 @@ ultravox_pipe = pipeline(
|
|
32 |
torch_dtype=torch.float16
|
33 |
)
|
34 |
|
35 |
-
|
36 |
diff_pipe = DiffusionPipeline.from_pretrained(
|
37 |
"teticio/audio-diffusion-instrumental-hiphop-256",
|
38 |
torch_dtype=torch.float16
|
39 |
).to("cuda")
|
40 |
|
41 |
-
|
42 |
dia = Dia.from_pretrained(
|
43 |
"nari-labs/Dia-1.6B",
|
44 |
device_map=device_map,
|
@@ -46,37 +45,34 @@ dia = Dia.from_pretrained(
|
|
46 |
trust_remote_code=True
|
47 |
)
|
48 |
|
49 |
-
print("All models loaded successfully!")
|
50 |
-
|
51 |
def process_audio(audio):
|
52 |
sr, array = audio
|
53 |
array = array.numpy() if torch.is_tensor(array) else array
|
54 |
|
55 |
-
#
|
56 |
-
vad_pipe({"waveform": torch.tensor(array).unsqueeze(0), "sample_rate": sr})
|
57 |
|
58 |
-
#
|
59 |
-
x
|
60 |
codes = rvq.encode(x)
|
61 |
decoded = rvq.decode(codes).squeeze().cpu().numpy()
|
62 |
|
63 |
-
#
|
64 |
-
out
|
65 |
text = out.get("text", "")
|
66 |
|
67 |
-
#
|
68 |
pros = diff_pipe(raw_audio=decoded)["audios"][0]
|
69 |
|
70 |
-
#
|
71 |
-
tts
|
72 |
tts_np = tts.squeeze().cpu().numpy()
|
73 |
tts_np = tts_np / np.max(np.abs(tts_np)) * 0.95 if tts_np.size else tts_np
|
74 |
|
75 |
return (sr, tts_np), text
|
76 |
|
77 |
-
# Gradio UI
|
78 |
with gr.Blocks(title="Maya AI π") as demo:
|
79 |
-
gr.Markdown("## Maya-AI Supernatural Conversational Agent")
|
80 |
audio_in = gr.Audio(source="microphone", type="numpy", label="Your Voice")
|
81 |
send_btn = gr.Button("Send")
|
82 |
audio_out = gr.Audio(label="AI Response")
|
|
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
import numpy as np
|
5 |
+
from transformers import pipeline
|
6 |
from diffusers import DiffusionPipeline
|
7 |
from pyannote.audio import Pipeline as PyannotePipeline
|
8 |
from dia.model import Dia
|
9 |
from dac.utils import load_model as load_dac_model
|
10 |
|
11 |
+
# Load HF token and configure multi-GPU sharding
|
12 |
HF_TOKEN = os.environ["HF_TOKEN"]
|
13 |
+
device_map = "auto"
|
14 |
|
15 |
+
# 1. Descript Audio Codec (RVQ)
|
16 |
rvq = load_dac_model(tag="latest", model_type="44khz")
|
17 |
rvq.eval()
|
18 |
+
if torch.cuda.is_available(): rvq = rvq.to("cuda")
|
|
|
19 |
|
20 |
+
# 2. Voice Activity Detection via Pyannote
|
21 |
vad_pipe = PyannotePipeline.from_pretrained(
|
22 |
"pyannote/voice-activity-detection",
|
23 |
use_auth_token=HF_TOKEN
|
24 |
)
|
25 |
|
26 |
+
# 3. Ultravox ASR+LLM (generic pipeline)
|
27 |
ultravox_pipe = pipeline(
|
28 |
model="fixie-ai/ultravox-v0_4",
|
29 |
trust_remote_code=True,
|
|
|
31 |
torch_dtype=torch.float16
|
32 |
)
|
33 |
|
34 |
+
# 4. Audio Diffusion (Diffusers loader)
|
35 |
diff_pipe = DiffusionPipeline.from_pretrained(
|
36 |
"teticio/audio-diffusion-instrumental-hiphop-256",
|
37 |
torch_dtype=torch.float16
|
38 |
).to("cuda")
|
39 |
|
40 |
+
# 5. Dia TTS with device sharding
|
41 |
dia = Dia.from_pretrained(
|
42 |
"nari-labs/Dia-1.6B",
|
43 |
device_map=device_map,
|
|
|
45 |
trust_remote_code=True
|
46 |
)
|
47 |
|
|
|
|
|
48 |
def process_audio(audio):
|
49 |
sr, array = audio
|
50 |
array = array.numpy() if torch.is_tensor(array) else array
|
51 |
|
52 |
+
# VAD segmentation
|
53 |
+
_ = vad_pipe({"waveform": torch.tensor(array).unsqueeze(0), "sample_rate": sr})
|
54 |
|
55 |
+
# RVQ encode/decode
|
56 |
+
x = torch.tensor(array).unsqueeze(0).to("cuda")
|
57 |
codes = rvq.encode(x)
|
58 |
decoded = rvq.decode(codes).squeeze().cpu().numpy()
|
59 |
|
60 |
+
# Ultravox: speech β text
|
61 |
+
out = ultravox_pipe({"array": decoded, "sampling_rate": sr})
|
62 |
text = out.get("text", "")
|
63 |
|
64 |
+
# Diffusion-based prosody
|
65 |
pros = diff_pipe(raw_audio=decoded)["audios"][0]
|
66 |
|
67 |
+
# Dia TTS synthesis
|
68 |
+
tts = dia.generate(f"[emotion:neutral] {text}")
|
69 |
tts_np = tts.squeeze().cpu().numpy()
|
70 |
tts_np = tts_np / np.max(np.abs(tts_np)) * 0.95 if tts_np.size else tts_np
|
71 |
|
72 |
return (sr, tts_np), text
|
73 |
|
|
|
74 |
with gr.Blocks(title="Maya AI π") as demo:
|
75 |
+
gr.Markdown("## Maya-AI: Supernatural Conversational Agent")
|
76 |
audio_in = gr.Audio(source="microphone", type="numpy", label="Your Voice")
|
77 |
send_btn = gr.Button("Send")
|
78 |
audio_out = gr.Audio(label="AI Response")
|