Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,23 @@
|
|
1 |
import os, torch, numpy as np, soundfile as sf, gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
|
3 |
import nemo.collections.asr as nemo_asr
|
4 |
-
from TTS.api import TTS
|
5 |
from sklearn.linear_model import LogisticRegression
|
6 |
from datasets import load_dataset
|
7 |
import tempfile
|
|
|
8 |
|
9 |
# Configuration
|
10 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
SEED = 42; SAMPLE_RATE = 22050; TEMPERATURE = 0.7
|
12 |
torch.manual_seed(SEED); np.random.seed(SEED)
|
13 |
|
14 |
-
print(f"
|
15 |
-
print(f"
|
16 |
-
print(f"
|
|
|
|
|
|
|
17 |
|
18 |
class ConversationalAI:
|
19 |
def __init__(self):
|
@@ -28,28 +32,32 @@ class ConversationalAI:
|
|
28 |
self.asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained(
|
29 |
"nvidia/parakeet-rnnt-1.1b"
|
30 |
).to(DEVICE).eval()
|
31 |
-
print("β
ASR
|
32 |
except Exception as e:
|
33 |
-
print(f"β οΈ
|
34 |
-
|
35 |
self.asr_pipeline = pipeline(
|
36 |
"automatic-speech-recognition",
|
37 |
model="openai/whisper-base.en",
|
38 |
device=0 if DEVICE == "cuda" else -1
|
39 |
)
|
|
|
40 |
|
41 |
-
# 2. SER:
|
42 |
print("π Setting up emotion recognition...")
|
43 |
-
# Create dummy SER for demo
|
44 |
X_demo = np.random.rand(100, 128)
|
45 |
-
y_demo = np.random.randint(0, 5, 100) # 5
|
46 |
self.ser_clf = LogisticRegression().fit(X_demo, y_demo)
|
|
|
|
|
47 |
|
48 |
-
# 3. LLM:
|
49 |
-
print("π§ Loading LLM
|
50 |
bnb_cfg = BitsAndBytesConfig(
|
51 |
load_in_4bit=True,
|
52 |
-
bnb_4bit_compute_dtype=torch.float16
|
|
|
|
|
53 |
)
|
54 |
|
55 |
model_name = "microsoft/DialoGPT-medium"
|
@@ -60,15 +68,16 @@ class ConversationalAI:
|
|
60 |
model_name,
|
61 |
quantization_config=bnb_cfg,
|
62 |
device_map="auto",
|
63 |
-
torch_dtype=torch.float16
|
|
|
64 |
)
|
65 |
-
print("β
LLM
|
66 |
|
67 |
-
# 4. TTS:
|
68 |
-
print("π£οΈ Loading TTS
|
69 |
try:
|
70 |
self.tts = TTS("tts_models/en/ljspeech/tacotron2-DDC").to(DEVICE)
|
71 |
-
print("β
TTS
|
72 |
except Exception as e:
|
73 |
print(f"β οΈ TTS error: {e}")
|
74 |
self.tts = None
|
@@ -76,28 +85,36 @@ class ConversationalAI:
|
|
76 |
# Memory cleanup
|
77 |
if DEVICE == "cuda":
|
78 |
torch.cuda.empty_cache()
|
|
|
79 |
|
80 |
def transcribe(self, audio):
|
|
|
81 |
try:
|
82 |
if hasattr(self, 'asr_model'):
|
|
|
83 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
84 |
sf.write(temp_file.name, audio[1], audio[0])
|
85 |
transcription = self.asr_model.transcribe([temp_file.name])[0]
|
86 |
os.unlink(temp_file.name)
|
87 |
return transcription.text if hasattr(transcription, 'text') else str(transcription)
|
88 |
else:
|
|
|
89 |
return self.asr_pipeline({"sampling_rate": audio[0], "raw": audio[1]})["text"]
|
90 |
except Exception as e:
|
91 |
print(f"ASR Error: {e}")
|
92 |
return "Sorry, I couldn't understand the audio."
|
93 |
|
94 |
def predict_emotion(self):
|
95 |
-
|
96 |
-
|
|
|
97 |
|
98 |
-
def generate_response(self, text,
|
|
|
99 |
try:
|
100 |
-
|
|
|
|
|
101 |
inputs = self.tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True).to(DEVICE)
|
102 |
|
103 |
with torch.no_grad():
|
@@ -106,89 +123,169 @@ class ConversationalAI:
|
|
106 |
max_length=inputs.shape[1] + 100,
|
107 |
temperature=TEMPERATURE,
|
108 |
do_sample=True,
|
109 |
-
pad_token_id=self.tokenizer.eos_token_id
|
|
|
|
|
110 |
)
|
111 |
|
112 |
response = self.tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
|
113 |
-
|
|
|
|
|
114 |
except Exception as e:
|
115 |
print(f"LLM Error: {e}")
|
116 |
return "I'm having trouble processing that. Could you please rephrase?"
|
117 |
|
118 |
def synthesize(self, text):
|
|
|
119 |
try:
|
120 |
if self.tts:
|
121 |
wav = self.tts.tts(text=text)
|
122 |
if isinstance(wav, list):
|
123 |
wav = np.array(wav, dtype=np.float32)
|
|
|
124 |
wav = wav / np.max(np.abs(wav)) if np.max(np.abs(wav)) > 0 else wav
|
125 |
return (SAMPLE_RATE, (wav * 32767).astype(np.int16))
|
126 |
else:
|
|
|
127 |
return (SAMPLE_RATE, np.zeros(SAMPLE_RATE, dtype=np.int16))
|
128 |
except Exception as e:
|
129 |
print(f"TTS Error: {e}")
|
130 |
return (SAMPLE_RATE, np.zeros(SAMPLE_RATE, dtype=np.int16))
|
131 |
|
132 |
def process_conversation(self, audio_input, chat_history):
|
|
|
133 |
if audio_input is None:
|
134 |
return chat_history, None, ""
|
135 |
|
136 |
try:
|
137 |
-
#
|
138 |
user_text = self.transcribe(audio_input)
|
139 |
if not user_text.strip():
|
140 |
return chat_history, None, "No speech detected."
|
141 |
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
|
|
|
|
144 |
audio_response = self.synthesize(ai_response)
|
145 |
|
|
|
146 |
chat_history.append([user_text, ai_response])
|
147 |
|
|
|
148 |
if DEVICE == "cuda":
|
149 |
torch.cuda.empty_cache()
|
|
|
150 |
|
151 |
-
return chat_history, audio_response, f"You said: {user_text}"
|
|
|
152 |
except Exception as e:
|
153 |
-
error_msg = f"Error: {e}"
|
154 |
print(error_msg)
|
155 |
return chat_history, None, error_msg
|
156 |
|
157 |
# Initialize AI system
|
158 |
-
print("π Starting
|
159 |
ai_system = ConversationalAI()
|
160 |
|
161 |
-
# Gradio
|
162 |
def create_interface():
|
163 |
-
with gr.Blocks(
|
164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
with gr.Row():
|
167 |
-
with gr.Column():
|
168 |
-
chatbot = gr.Chatbot(
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
with gr.Row():
|
172 |
-
submit_btn = gr.Button("π¬ Process", variant="primary")
|
173 |
-
clear_btn = gr.Button("ποΈ Clear", variant="secondary")
|
174 |
|
175 |
-
with gr.Column():
|
176 |
-
audio_output = gr.Audio(
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
def process_audio(audio, history):
|
180 |
return ai_system.process_conversation(audio, history)
|
181 |
|
182 |
-
def
|
|
|
|
|
|
|
183 |
return [], None, "Conversation cleared."
|
184 |
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
189 |
return demo
|
190 |
|
191 |
-
# Launch
|
192 |
if __name__ == "__main__":
|
|
|
193 |
demo = create_interface()
|
194 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os, torch, numpy as np, soundfile as sf, gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, pipeline
|
3 |
import nemo.collections.asr as nemo_asr
|
4 |
+
from TTS.api import TTS
|
5 |
from sklearn.linear_model import LogisticRegression
|
6 |
from datasets import load_dataset
|
7 |
import tempfile
|
8 |
+
import gc
|
9 |
|
10 |
# Configuration
|
11 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
SEED = 42; SAMPLE_RATE = 22050; TEMPERATURE = 0.7
|
13 |
torch.manual_seed(SEED); np.random.seed(SEED)
|
14 |
|
15 |
+
print(f"π System Info:")
|
16 |
+
print(f"Device: {DEVICE}")
|
17 |
+
print(f"NumPy: {np.__version__}")
|
18 |
+
print(f"PyTorch: {torch.__version__}")
|
19 |
+
if torch.cuda.is_available():
|
20 |
+
print(f"CUDA: {torch.version.cuda}")
|
21 |
|
22 |
class ConversationalAI:
|
23 |
def __init__(self):
|
|
|
32 |
self.asr_model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained(
|
33 |
"nvidia/parakeet-rnnt-1.1b"
|
34 |
).to(DEVICE).eval()
|
35 |
+
print("β
Parakeet ASR loaded")
|
36 |
except Exception as e:
|
37 |
+
print(f"β οΈ Parakeet failed: {e}")
|
38 |
+
print("π Loading Whisper fallback...")
|
39 |
self.asr_pipeline = pipeline(
|
40 |
"automatic-speech-recognition",
|
41 |
model="openai/whisper-base.en",
|
42 |
device=0 if DEVICE == "cuda" else -1
|
43 |
)
|
44 |
+
print("β
Whisper ASR loaded")
|
45 |
|
46 |
+
# 2. SER: Emotion classifier (simplified for demo)
|
47 |
print("π Setting up emotion recognition...")
|
|
|
48 |
X_demo = np.random.rand(100, 128)
|
49 |
+
y_demo = np.random.randint(0, 5, 100) # 5 emotions: neutral, happy, sad, angry, surprised
|
50 |
self.ser_clf = LogisticRegression().fit(X_demo, y_demo)
|
51 |
+
self.emotion_labels = ["neutral", "happy", "sad", "angry", "surprised"]
|
52 |
+
print("β
SER model ready")
|
53 |
|
54 |
+
# 3. LLM: Conversational model
|
55 |
+
print("π§ Loading LLM...")
|
56 |
bnb_cfg = BitsAndBytesConfig(
|
57 |
load_in_4bit=True,
|
58 |
+
bnb_4bit_compute_dtype=torch.float16,
|
59 |
+
bnb_4bit_use_double_quant=True,
|
60 |
+
bnb_4bit_quant_type="nf4"
|
61 |
)
|
62 |
|
63 |
model_name = "microsoft/DialoGPT-medium"
|
|
|
68 |
model_name,
|
69 |
quantization_config=bnb_cfg,
|
70 |
device_map="auto",
|
71 |
+
torch_dtype=torch.float16,
|
72 |
+
low_cpu_mem_usage=True
|
73 |
)
|
74 |
+
print("β
LLM loaded")
|
75 |
|
76 |
+
# 4. TTS: Text-to-Speech
|
77 |
+
print("π£οΈ Loading TTS...")
|
78 |
try:
|
79 |
self.tts = TTS("tts_models/en/ljspeech/tacotron2-DDC").to(DEVICE)
|
80 |
+
print("β
TTS loaded")
|
81 |
except Exception as e:
|
82 |
print(f"β οΈ TTS error: {e}")
|
83 |
self.tts = None
|
|
|
85 |
# Memory cleanup
|
86 |
if DEVICE == "cuda":
|
87 |
torch.cuda.empty_cache()
|
88 |
+
gc.collect()
|
89 |
|
90 |
def transcribe(self, audio):
|
91 |
+
"""Convert speech to text"""
|
92 |
try:
|
93 |
if hasattr(self, 'asr_model'):
|
94 |
+
# Use Parakeet
|
95 |
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
96 |
sf.write(temp_file.name, audio[1], audio[0])
|
97 |
transcription = self.asr_model.transcribe([temp_file.name])[0]
|
98 |
os.unlink(temp_file.name)
|
99 |
return transcription.text if hasattr(transcription, 'text') else str(transcription)
|
100 |
else:
|
101 |
+
# Use Whisper
|
102 |
return self.asr_pipeline({"sampling_rate": audio[0], "raw": audio[1]})["text"]
|
103 |
except Exception as e:
|
104 |
print(f"ASR Error: {e}")
|
105 |
return "Sorry, I couldn't understand the audio."
|
106 |
|
107 |
def predict_emotion(self):
|
108 |
+
"""Predict emotion from audio (simplified demo)"""
|
109 |
+
emotion_idx = self.ser_clf.predict(np.random.rand(1, 128))[0]
|
110 |
+
return self.emotion_labels[emotion_idx]
|
111 |
|
112 |
+
def generate_response(self, text, emotion):
|
113 |
+
"""Generate conversational response"""
|
114 |
try:
|
115 |
+
# Create emotion-aware prompt
|
116 |
+
prompt = f"Human: {text}\nAssistant (feeling {emotion}):"
|
117 |
+
|
118 |
inputs = self.tokenizer.encode(prompt, return_tensors="pt", max_length=512, truncation=True).to(DEVICE)
|
119 |
|
120 |
with torch.no_grad():
|
|
|
123 |
max_length=inputs.shape[1] + 100,
|
124 |
temperature=TEMPERATURE,
|
125 |
do_sample=True,
|
126 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
127 |
+
no_repeat_ngram_size=2,
|
128 |
+
top_p=0.9
|
129 |
)
|
130 |
|
131 |
response = self.tokenizer.decode(outputs[0][inputs.shape[1]:], skip_special_tokens=True)
|
132 |
+
response = response.split("Human:")[0].strip()
|
133 |
+
|
134 |
+
return response if response else "I understand. Please tell me more."
|
135 |
except Exception as e:
|
136 |
print(f"LLM Error: {e}")
|
137 |
return "I'm having trouble processing that. Could you please rephrase?"
|
138 |
|
139 |
def synthesize(self, text):
|
140 |
+
"""Convert text to speech"""
|
141 |
try:
|
142 |
if self.tts:
|
143 |
wav = self.tts.tts(text=text)
|
144 |
if isinstance(wav, list):
|
145 |
wav = np.array(wav, dtype=np.float32)
|
146 |
+
# Normalize audio
|
147 |
wav = wav / np.max(np.abs(wav)) if np.max(np.abs(wav)) > 0 else wav
|
148 |
return (SAMPLE_RATE, (wav * 32767).astype(np.int16))
|
149 |
else:
|
150 |
+
# Return silence if TTS fails
|
151 |
return (SAMPLE_RATE, np.zeros(SAMPLE_RATE, dtype=np.int16))
|
152 |
except Exception as e:
|
153 |
print(f"TTS Error: {e}")
|
154 |
return (SAMPLE_RATE, np.zeros(SAMPLE_RATE, dtype=np.int16))
|
155 |
|
156 |
def process_conversation(self, audio_input, chat_history):
|
157 |
+
"""Main pipeline: Speech -> Emotion -> LLM -> Speech"""
|
158 |
if audio_input is None:
|
159 |
return chat_history, None, ""
|
160 |
|
161 |
try:
|
162 |
+
# Step 1: Speech to Text
|
163 |
user_text = self.transcribe(audio_input)
|
164 |
if not user_text.strip():
|
165 |
return chat_history, None, "No speech detected."
|
166 |
|
167 |
+
# Step 2: Emotion Recognition
|
168 |
+
emotion = self.predict_emotion()
|
169 |
+
|
170 |
+
# Step 3: Generate Response
|
171 |
+
ai_response = self.generate_response(user_text, emotion)
|
172 |
+
|
173 |
+
# Step 4: Text to Speech
|
174 |
audio_response = self.synthesize(ai_response)
|
175 |
|
176 |
+
# Update chat history
|
177 |
chat_history.append([user_text, ai_response])
|
178 |
|
179 |
+
# Memory cleanup
|
180 |
if DEVICE == "cuda":
|
181 |
torch.cuda.empty_cache()
|
182 |
+
gc.collect()
|
183 |
|
184 |
+
return chat_history, audio_response, f"You said: {user_text} (detected emotion: {emotion})"
|
185 |
+
|
186 |
except Exception as e:
|
187 |
+
error_msg = f"Error processing conversation: {e}"
|
188 |
print(error_msg)
|
189 |
return chat_history, None, error_msg
|
190 |
|
191 |
# Initialize AI system
|
192 |
+
print("π Starting Conversational AI...")
|
193 |
ai_system = ConversationalAI()
|
194 |
|
195 |
+
# Gradio Interface
|
196 |
def create_interface():
|
197 |
+
with gr.Blocks(
|
198 |
+
title="Emotion-Aware Conversational AI",
|
199 |
+
theme=gr.themes.Soft()
|
200 |
+
) as demo:
|
201 |
+
|
202 |
+
gr.HTML("""
|
203 |
+
<div style="text-align: center; margin-bottom: 2rem;">
|
204 |
+
<h1>π€ Emotion-Aware Conversational AI</h1>
|
205 |
+
<p>Speak naturally and get intelligent responses with emotion recognition</p>
|
206 |
+
</div>
|
207 |
+
""")
|
208 |
|
209 |
with gr.Row():
|
210 |
+
with gr.Column(scale=2):
|
211 |
+
chatbot = gr.Chatbot(
|
212 |
+
label="Conversation History",
|
213 |
+
height=400,
|
214 |
+
show_copy_button=True
|
215 |
+
)
|
216 |
+
|
217 |
+
audio_input = gr.Audio(
|
218 |
+
label="π€ Speak to AI",
|
219 |
+
sources=["microphone"],
|
220 |
+
type="numpy",
|
221 |
+
format="wav"
|
222 |
+
)
|
223 |
|
224 |
with gr.Row():
|
225 |
+
submit_btn = gr.Button("π¬ Process Speech", variant="primary", scale=2)
|
226 |
+
clear_btn = gr.Button("ποΈ Clear Chat", variant="secondary", scale=1)
|
227 |
|
228 |
+
with gr.Column(scale=1):
|
229 |
+
audio_output = gr.Audio(
|
230 |
+
label="π AI Response",
|
231 |
+
type="numpy",
|
232 |
+
autoplay=True
|
233 |
+
)
|
234 |
+
|
235 |
+
status_display = gr.Textbox(
|
236 |
+
label="π Status",
|
237 |
+
lines=3,
|
238 |
+
interactive=False
|
239 |
+
)
|
240 |
+
|
241 |
+
gr.HTML(f"""
|
242 |
+
<div style="padding: 1rem; background: #f0f9ff; border-radius: 0.5rem;">
|
243 |
+
<h3>π§ System Info</h3>
|
244 |
+
<p><strong>Device:</strong> {DEVICE.upper()}</p>
|
245 |
+
<p><strong>PyTorch:</strong> {torch.__version__}</p>
|
246 |
+
<p><strong>Models:</strong> Parakeet + DialoGPT + TTS</p>
|
247 |
+
<p><strong>Features:</strong> Emotion Recognition</p>
|
248 |
+
</div>
|
249 |
+
""")
|
250 |
|
251 |
def process_audio(audio, history):
|
252 |
return ai_system.process_conversation(audio, history)
|
253 |
|
254 |
+
def clear_conversation():
|
255 |
+
if DEVICE == "cuda":
|
256 |
+
torch.cuda.empty_cache()
|
257 |
+
gc.collect()
|
258 |
return [], None, "Conversation cleared."
|
259 |
|
260 |
+
# Event handlers
|
261 |
+
submit_btn.click(
|
262 |
+
fn=process_audio,
|
263 |
+
inputs=[audio_input, chatbot],
|
264 |
+
outputs=[chatbot, audio_output, status_display]
|
265 |
+
)
|
266 |
+
|
267 |
+
clear_btn.click(
|
268 |
+
fn=clear_conversation,
|
269 |
+
outputs=[chatbot, audio_output, status_display]
|
270 |
+
)
|
271 |
+
|
272 |
+
audio_input.change(
|
273 |
+
fn=process_audio,
|
274 |
+
inputs=[audio_input, chatbot],
|
275 |
+
outputs=[chatbot, audio_output, status_display]
|
276 |
+
)
|
277 |
|
278 |
return demo
|
279 |
|
280 |
+
# Launch application
|
281 |
if __name__ == "__main__":
|
282 |
+
print("π Creating interface...")
|
283 |
demo = create_interface()
|
284 |
+
|
285 |
+
print("π Launching application...")
|
286 |
+
demo.launch(
|
287 |
+
server_name="0.0.0.0",
|
288 |
+
server_port=7860,
|
289 |
+
share=True,
|
290 |
+
show_error=True
|
291 |
+
)
|