Update app.py
Browse files
app.py
CHANGED
@@ -9,14 +9,25 @@ import json
|
|
9 |
import time
|
10 |
from datetime import datetime
|
11 |
import os
|
|
|
12 |
|
13 |
-
# Import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
try:
|
15 |
from TTS.api import TTS
|
16 |
-
|
|
|
17 |
except ImportError:
|
18 |
-
|
19 |
-
|
20 |
|
21 |
warnings.filterwarnings("ignore")
|
22 |
|
@@ -25,7 +36,7 @@ asr_pipe = None
|
|
25 |
qwen_model = None
|
26 |
qwen_tokenizer = None
|
27 |
tts_model = None
|
28 |
-
|
29 |
|
30 |
class ConversationManager:
|
31 |
def __init__(self, max_exchanges=5):
|
@@ -54,20 +65,34 @@ class ConversationManager:
|
|
54 |
self.history = []
|
55 |
self.current_emotion = "neutral"
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
def load_models():
|
58 |
-
"""Load all models with
|
59 |
-
global asr_pipe, qwen_model, qwen_tokenizer, tts_model
|
60 |
|
61 |
-
print("π Loading models...")
|
62 |
|
63 |
-
# Load ASR model
|
64 |
print("π€ Loading Whisper for ASR...")
|
65 |
try:
|
66 |
asr_pipe = pipeline(
|
67 |
"automatic-speech-recognition",
|
68 |
model="openai/whisper-base",
|
69 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
70 |
-
device=0 if torch.cuda.is_available() else -1
|
|
|
71 |
)
|
72 |
print("β
Whisper ASR loaded successfully!")
|
73 |
except Exception as e:
|
@@ -86,79 +111,132 @@ def load_models():
|
|
86 |
model_name,
|
87 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
88 |
device_map="auto" if torch.cuda.is_available() else None,
|
89 |
-
trust_remote_code=True
|
|
|
90 |
)
|
91 |
print("β
Qwen loaded successfully!")
|
92 |
except Exception as e:
|
93 |
print(f"β Error loading Qwen: {e}")
|
94 |
return False
|
95 |
|
96 |
-
# Load TTS model
|
97 |
print("ποΈ Loading TTS model...")
|
98 |
-
|
|
|
|
|
99 |
try:
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False)
|
102 |
if torch.cuda.is_available():
|
103 |
tts_model = tts_model.to("cuda")
|
104 |
-
|
|
|
|
|
105 |
except Exception as e:
|
106 |
-
print(f"β οΈ TTS failed to load: {e}")
|
107 |
tts_model = None
|
108 |
-
else:
|
109 |
-
print("β οΈ TTS not available, using text-only mode")
|
110 |
-
tts_model = None
|
111 |
|
|
|
|
|
|
|
112 |
return True
|
113 |
|
114 |
def detect_emotion_from_text(text):
|
115 |
-
"""
|
116 |
text_lower = text.lower()
|
117 |
|
118 |
-
#
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
def speech_to_text_with_emotion(audio_input):
|
131 |
-
"""
|
132 |
try:
|
133 |
if audio_input is None:
|
134 |
return "", "neutral"
|
135 |
|
136 |
-
# Process audio input
|
137 |
if isinstance(audio_input, tuple):
|
138 |
sample_rate, audio_data = audio_input
|
139 |
-
|
140 |
-
|
|
|
|
|
|
|
|
|
|
|
141 |
audio_data = audio_data.astype(np.float32)
|
|
|
|
|
142 |
if len(audio_data.shape) > 1:
|
143 |
audio_data = audio_data.mean(axis=1)
|
144 |
else:
|
145 |
audio_data = audio_input
|
146 |
sample_rate = 16000
|
147 |
|
|
|
|
|
|
|
|
|
148 |
# Normalize audio
|
149 |
if len(audio_data) > 0:
|
150 |
max_val = np.max(np.abs(audio_data))
|
151 |
if max_val > 0:
|
152 |
-
audio_data = audio_data / max_val
|
153 |
|
154 |
# Resample to 16kHz if needed
|
155 |
if sample_rate != 16000:
|
156 |
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
157 |
|
158 |
-
# Speech to text
|
159 |
result = asr_pipe(audio_data, sampling_rate=16000)
|
160 |
transcription = result['text'].strip()
|
161 |
|
|
|
|
|
|
|
162 |
# Detect emotion from transcription
|
163 |
emotion = detect_emotion_from_text(transcription)
|
164 |
|
@@ -169,41 +247,47 @@ def speech_to_text_with_emotion(audio_input):
|
|
169 |
return "Sorry, I couldn't understand that.", "neutral"
|
170 |
|
171 |
def generate_contextual_response(user_input, emotion, conversation_manager):
|
172 |
-
"""
|
173 |
try:
|
174 |
context = conversation_manager.get_context()
|
175 |
|
176 |
-
#
|
177 |
emotional_prompts = {
|
178 |
-
"happy": "Respond with enthusiasm and joy. Use positive language and
|
179 |
-
"sad": "Respond with empathy and comfort. Be gentle, understanding, and supportive.",
|
180 |
-
"angry": "Respond calmly and try to help. Be patient and de-escalate
|
181 |
-
"surprised": "Share in
|
182 |
-
"
|
|
|
|
|
183 |
}
|
184 |
|
185 |
-
system_prompt = f"""You are Maya, a
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
|
|
|
|
|
|
|
|
200 |
|
201 |
messages = [
|
202 |
{"role": "system", "content": system_prompt},
|
203 |
{"role": "user", "content": user_input}
|
204 |
]
|
205 |
|
206 |
-
# Generate response
|
207 |
text = qwen_tokenizer.apply_chat_template(
|
208 |
messages,
|
209 |
tokenize=False,
|
@@ -217,10 +301,11 @@ def generate_contextual_response(user_input, emotion, conversation_manager):
|
|
217 |
with torch.no_grad():
|
218 |
generated_ids = qwen_model.generate(
|
219 |
model_inputs.input_ids,
|
220 |
-
max_new_tokens=
|
221 |
do_sample=True,
|
222 |
temperature=0.7,
|
223 |
top_p=0.9,
|
|
|
224 |
pad_token_id=qwen_tokenizer.eos_token_id
|
225 |
)
|
226 |
|
@@ -230,14 +315,19 @@ def generate_contextual_response(user_input, emotion, conversation_manager):
|
|
230 |
|
231 |
response = qwen_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
232 |
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
except Exception as e:
|
236 |
print(f"Error in response generation: {e}")
|
237 |
return "I'm sorry, I'm having trouble processing that right now. Could you please try again?"
|
238 |
|
239 |
def text_to_speech_emotional(text, emotion="neutral"):
|
240 |
-
"""
|
241 |
try:
|
242 |
if tts_model is None:
|
243 |
print(f"π Maya says ({emotion}): {text}")
|
@@ -247,36 +337,85 @@ def text_to_speech_emotional(text, emotion="neutral"):
|
|
247 |
if torch.cuda.is_available():
|
248 |
torch.cuda.empty_cache()
|
249 |
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
279 |
|
|
|
|
|
|
|
|
|
|
|
280 |
except Exception as e:
|
281 |
print(f"Error in TTS: {e}")
|
282 |
print(f"π Maya says ({emotion}): {text}")
|
@@ -288,13 +427,14 @@ conv_manager = ConversationManager()
|
|
288 |
def start_call():
|
289 |
"""Initialize call and return greeting"""
|
290 |
conv_manager.clear()
|
291 |
-
greeting_text = "Hello! I'm Maya, your AI assistant.
|
292 |
greeting_audio = text_to_speech_emotional(greeting_text, "happy")
|
293 |
|
294 |
-
|
|
|
295 |
|
296 |
def process_conversation(audio_input):
|
297 |
-
"""
|
298 |
if audio_input is None:
|
299 |
return None, "Please record some audio first.", "", "β No audio input received."
|
300 |
|
@@ -302,8 +442,8 @@ def process_conversation(audio_input):
|
|
302 |
# Step 1: Speech to Text + Emotion Detection
|
303 |
user_text, emotion = speech_to_text_with_emotion(audio_input)
|
304 |
|
305 |
-
if not user_text or user_text.strip() == "":
|
306 |
-
return None, "I didn't catch that. Could you please
|
307 |
|
308 |
# Step 2: Generate contextual response
|
309 |
ai_response = generate_contextual_response(user_text, emotion, conv_manager)
|
@@ -314,18 +454,19 @@ def process_conversation(audio_input):
|
|
314 |
# Step 4: Update conversation history
|
315 |
conv_manager.add_exchange(user_text, ai_response, emotion)
|
316 |
|
317 |
-
status = f"β
Processed successfully! | Emotion: {emotion} | Exchange: {len(conv_manager.history)}/5"
|
318 |
|
319 |
return response_audio, ai_response, user_text, status
|
320 |
|
321 |
except Exception as e:
|
322 |
error_msg = f"β Error processing conversation: {str(e)}"
|
|
|
323 |
return None, "I'm sorry, I encountered an error. Please try again.", "", error_msg
|
324 |
|
325 |
def get_conversation_history():
|
326 |
"""Return formatted conversation history"""
|
327 |
if not conv_manager.history:
|
328 |
-
return "No conversation history yet. Start a call to begin chatting!"
|
329 |
|
330 |
history_text = "π **Conversation History:**\n\n"
|
331 |
for i, exchange in enumerate(conv_manager.history, 1):
|
@@ -338,71 +479,86 @@ def get_conversation_history():
|
|
338 |
|
339 |
def end_call():
|
340 |
"""End call and clear conversation"""
|
341 |
-
farewell_text = "Thank you for talking with
|
342 |
farewell_audio = text_to_speech_emotional(farewell_text, "happy")
|
343 |
conv_manager.clear()
|
344 |
|
345 |
-
return farewell_audio, farewell_text, "Call ended.
|
346 |
|
347 |
def create_interface():
|
348 |
-
"""Create
|
349 |
with gr.Blocks(
|
350 |
-
title="Maya AI - Speech-to-Speech Assistant",
|
351 |
theme=gr.themes.Soft(),
|
352 |
css="""
|
353 |
.main-header {
|
354 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
355 |
border-radius: 15px;
|
356 |
-
padding:
|
357 |
text-align: center;
|
358 |
-
margin-bottom:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
}
|
360 |
-
.call-button { background: linear-gradient(45deg, #FF6B6B, #4ECDC4) !important; }
|
361 |
-
.process-button { background: linear-gradient(45deg, #45B7D1, #96CEB4) !important; }
|
362 |
-
.end-button { background: linear-gradient(45deg, #FFA07A, #FF6347) !important; }
|
363 |
"""
|
364 |
) as demo:
|
365 |
|
366 |
gr.HTML("""
|
367 |
<div class="main-header">
|
368 |
-
<h1 style="color: white; margin: 0; font-size: 2.
|
369 |
-
<p style="color: white; margin:
|
370 |
-
<p style="color: #E8E8E8; margin: 0;">Natural β’ Emotional β’ Contextual</p>
|
371 |
</div>
|
372 |
""")
|
373 |
|
374 |
with gr.Row():
|
375 |
with gr.Column(scale=1):
|
376 |
# Call Controls
|
377 |
-
gr.HTML("<h3>π Call Controls</h3>")
|
378 |
start_btn = gr.Button("π Start Call", elem_classes="call-button", size="lg")
|
379 |
end_btn = gr.Button("πβ End Call", elem_classes="end-button", size="lg")
|
380 |
|
381 |
# Audio Input
|
382 |
-
gr.HTML("<h3>π€ Voice Input</h3>")
|
383 |
audio_input = gr.Audio(
|
384 |
label="Record Your Message",
|
385 |
sources=["microphone"],
|
386 |
-
type="numpy"
|
|
|
387 |
)
|
388 |
|
389 |
process_btn = gr.Button("π― Process Message", elem_classes="process-button", variant="primary", size="lg")
|
390 |
|
391 |
# Status Display
|
392 |
status_display = gr.Textbox(
|
393 |
-
label="π Status",
|
394 |
interactive=False,
|
395 |
-
lines=
|
396 |
-
value="
|
397 |
)
|
398 |
|
399 |
with gr.Column(scale=2):
|
400 |
# AI Response Audio
|
401 |
-
gr.HTML("<h3>π Maya's Response</h3>")
|
402 |
response_audio = gr.Audio(
|
403 |
label="Maya's Voice Response",
|
404 |
type="numpy",
|
405 |
-
interactive=False
|
|
|
406 |
)
|
407 |
|
408 |
# Text Displays
|
@@ -411,25 +567,25 @@ def create_interface():
|
|
411 |
user_text_display = gr.Textbox(
|
412 |
label="π€ What You Said",
|
413 |
interactive=False,
|
414 |
-
lines=
|
415 |
-
placeholder="Your speech will appear here..."
|
416 |
)
|
417 |
|
418 |
with gr.Column():
|
419 |
ai_text_display = gr.Textbox(
|
420 |
label="π€ Maya's Response",
|
421 |
interactive=False,
|
422 |
-
lines=
|
423 |
placeholder="Maya's response will appear here..."
|
424 |
)
|
425 |
|
426 |
# Conversation History Section
|
427 |
with gr.Row():
|
428 |
with gr.Column():
|
429 |
-
gr.HTML("<h3>π Conversation History</h3>")
|
430 |
-
history_btn = gr.Button("π Show History", variant="secondary")
|
431 |
history_display = gr.Markdown(
|
432 |
-
value="No conversation history yet. Start a call to begin chatting!",
|
433 |
label="Conversation Log"
|
434 |
)
|
435 |
|
@@ -455,27 +611,38 @@ def create_interface():
|
|
455 |
outputs=[history_display]
|
456 |
)
|
457 |
|
458 |
-
# Instructions
|
459 |
gr.HTML("""
|
460 |
-
<div style="margin-top:
|
461 |
-
<h3>π‘ How to Use Maya AI:</h3>
|
462 |
-
<
|
463 |
-
<
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
470 |
|
471 |
-
<
|
472 |
-
|
473 |
-
|
474 |
-
<li>π§ <strong>Smart Responses:</strong> Using Qwen2.5-1.5B</li>
|
475 |
-
<li>π <strong>Emotion Detection:</strong> Automatic emotion recognition</li>
|
476 |
-
<li>π <strong>Natural Speech:</strong> High-quality TTS with emotions</li>
|
477 |
-
<li>π <strong>Context Memory:</strong> Remembers conversation flow</li>
|
478 |
-
</ul>
|
479 |
</div>
|
480 |
""")
|
481 |
|
@@ -483,16 +650,13 @@ def create_interface():
|
|
483 |
|
484 |
if __name__ == "__main__":
|
485 |
print("π Initializing Maya AI System...")
|
486 |
-
print("π§ Checking GPU availability...")
|
487 |
|
488 |
-
|
489 |
-
|
490 |
-
print(f"πΎ GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
|
491 |
-
else:
|
492 |
-
print("β οΈ No GPU detected, using CPU")
|
493 |
|
494 |
if load_models():
|
495 |
print("β
All models loaded successfully!")
|
|
|
496 |
print("π Launching Maya AI Interface...")
|
497 |
|
498 |
demo = create_interface()
|
|
|
9 |
import time
|
10 |
from datetime import datetime
|
11 |
import os
|
12 |
+
import sys
|
13 |
|
14 |
+
# Import with enhanced error handling
|
15 |
+
try:
|
16 |
+
from dia.model import Dia
|
17 |
+
DIA_AVAILABLE = True
|
18 |
+
print("β
Dia TTS library imported successfully")
|
19 |
+
except ImportError as e:
|
20 |
+
print(f"β οΈ Dia TTS not available: {e}")
|
21 |
+
DIA_AVAILABLE = False
|
22 |
+
|
23 |
+
# Fallback TTS import
|
24 |
try:
|
25 |
from TTS.api import TTS
|
26 |
+
COQUI_TTS_AVAILABLE = True
|
27 |
+
print("β
Coqui TTS library available as fallback")
|
28 |
except ImportError:
|
29 |
+
COQUI_TTS_AVAILABLE = False
|
30 |
+
print("β οΈ Coqui TTS not available")
|
31 |
|
32 |
warnings.filterwarnings("ignore")
|
33 |
|
|
|
36 |
qwen_model = None
|
37 |
qwen_tokenizer = None
|
38 |
tts_model = None
|
39 |
+
tts_type = None # Track which TTS model is loaded
|
40 |
|
41 |
class ConversationManager:
|
42 |
def __init__(self, max_exchanges=5):
|
|
|
65 |
self.history = []
|
66 |
self.current_emotion = "neutral"
|
67 |
|
68 |
+
def check_system_info():
|
69 |
+
"""Check system capabilities"""
|
70 |
+
print("π System Information:")
|
71 |
+
print(f"Python: {sys.version}")
|
72 |
+
print(f"PyTorch: {torch.__version__}")
|
73 |
+
|
74 |
+
if torch.cuda.is_available():
|
75 |
+
print(f"β
CUDA: {torch.cuda.get_device_name()}")
|
76 |
+
print(f"πΎ GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.1f} GB")
|
77 |
+
print(f"π₯ CUDA Version: {torch.version.cuda}")
|
78 |
+
else:
|
79 |
+
print("β οΈ CUDA not available, using CPU")
|
80 |
+
|
81 |
def load_models():
|
82 |
+
"""Load all models with enhanced error handling"""
|
83 |
+
global asr_pipe, qwen_model, qwen_tokenizer, tts_model, tts_type
|
84 |
|
85 |
+
print("π Loading Maya AI models...")
|
86 |
|
87 |
+
# Load ASR model (Whisper)
|
88 |
print("π€ Loading Whisper for ASR...")
|
89 |
try:
|
90 |
asr_pipe = pipeline(
|
91 |
"automatic-speech-recognition",
|
92 |
model="openai/whisper-base",
|
93 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
94 |
+
device=0 if torch.cuda.is_available() else -1,
|
95 |
+
return_timestamps=False
|
96 |
)
|
97 |
print("β
Whisper ASR loaded successfully!")
|
98 |
except Exception as e:
|
|
|
111 |
model_name,
|
112 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
113 |
device_map="auto" if torch.cuda.is_available() else None,
|
114 |
+
trust_remote_code=True,
|
115 |
+
low_cpu_mem_usage=True
|
116 |
)
|
117 |
print("β
Qwen loaded successfully!")
|
118 |
except Exception as e:
|
119 |
print(f"β Error loading Qwen: {e}")
|
120 |
return False
|
121 |
|
122 |
+
# Load TTS model with priority: Dia > Coqui > Text-only
|
123 |
print("ποΈ Loading TTS model...")
|
124 |
+
|
125 |
+
# Try Dia TTS first (preferred)
|
126 |
+
if DIA_AVAILABLE:
|
127 |
try:
|
128 |
+
print("Attempting to load Dia TTS...")
|
129 |
+
tts_model = Dia.from_pretrained(
|
130 |
+
"nari-labs/Dia-1.6B",
|
131 |
+
compute_dtype="float16" if torch.cuda.is_available() else "float32"
|
132 |
+
)
|
133 |
+
tts_type = "dia"
|
134 |
+
print("β
Dia TTS loaded successfully!")
|
135 |
+
return True
|
136 |
+
except Exception as e:
|
137 |
+
print(f"β οΈ Dia TTS failed to load: {e}")
|
138 |
+
tts_model = None
|
139 |
+
|
140 |
+
# Fallback to Coqui TTS
|
141 |
+
if COQUI_TTS_AVAILABLE:
|
142 |
+
try:
|
143 |
+
print("Attempting to load Coqui TTS as fallback...")
|
144 |
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC", progress_bar=False)
|
145 |
if torch.cuda.is_available():
|
146 |
tts_model = tts_model.to("cuda")
|
147 |
+
tts_type = "coqui"
|
148 |
+
print("β
Coqui TTS loaded successfully!")
|
149 |
+
return True
|
150 |
except Exception as e:
|
151 |
+
print(f"β οΈ Coqui TTS failed to load: {e}")
|
152 |
tts_model = None
|
|
|
|
|
|
|
153 |
|
154 |
+
# Continue without TTS (text-only mode)
|
155 |
+
print("β οΈ No TTS available, running in text-only mode")
|
156 |
+
tts_type = "none"
|
157 |
return True
|
158 |
|
159 |
def detect_emotion_from_text(text):
|
160 |
+
"""Enhanced emotion detection from text"""
|
161 |
text_lower = text.lower()
|
162 |
|
163 |
+
# Enhanced emotion keywords with weights
|
164 |
+
emotions = {
|
165 |
+
'happy': ['happy', 'great', 'awesome', 'wonderful', 'excited', 'laugh', 'amazing',
|
166 |
+
'fantastic', 'excellent', 'brilliant', 'perfect', 'love', 'joy', 'cheerful',
|
167 |
+
'delighted', 'thrilled', 'ecstatic'],
|
168 |
+
'sad': ['sad', 'upset', 'disappointed', 'cry', 'terrible', 'awful', 'depressed',
|
169 |
+
'miserable', 'heartbroken', 'devastated', 'gloomy', 'melancholy', 'down',
|
170 |
+
'blue', 'sorrowful'],
|
171 |
+
'angry': ['angry', 'mad', 'furious', 'annoyed', 'frustrated', 'hate', 'rage',
|
172 |
+
'irritated', 'outraged', 'livid', 'enraged', 'pissed', 'irate'],
|
173 |
+
'surprised': ['wow', 'incredible', 'surprised', 'unbelievable', 'shocking',
|
174 |
+
'astonishing', 'remarkable', 'extraordinary', 'mind-blowing',
|
175 |
+
'amazing', 'stunning'],
|
176 |
+
'fearful': ['scared', 'afraid', 'terrified', 'worried', 'anxious', 'nervous',
|
177 |
+
'frightened', 'panic', 'concerned', 'fearful'],
|
178 |
+
'disgusted': ['disgusting', 'gross', 'revolting', 'sick', 'nauseating', 'repulsive',
|
179 |
+
'awful', 'horrible']
|
180 |
+
}
|
181 |
+
|
182 |
+
# Count emotion indicators
|
183 |
+
emotion_scores = {}
|
184 |
+
for emotion, keywords in emotions.items():
|
185 |
+
score = sum(1 for keyword in keywords if keyword in text_lower)
|
186 |
+
if score > 0:
|
187 |
+
emotion_scores[emotion] = score
|
188 |
+
|
189 |
+
# Return the emotion with highest score, or neutral if none found
|
190 |
+
if emotion_scores:
|
191 |
+
return max(emotion_scores, key=emotion_scores.get)
|
192 |
+
return 'neutral'
|
193 |
|
194 |
def speech_to_text_with_emotion(audio_input):
|
195 |
+
"""Enhanced STT with better audio processing"""
|
196 |
try:
|
197 |
if audio_input is None:
|
198 |
return "", "neutral"
|
199 |
|
200 |
+
# Process audio input with better handling
|
201 |
if isinstance(audio_input, tuple):
|
202 |
sample_rate, audio_data = audio_input
|
203 |
+
|
204 |
+
# Handle different audio formats
|
205 |
+
if audio_data.dtype == np.int16:
|
206 |
+
audio_data = audio_data.astype(np.float32) / 32768.0
|
207 |
+
elif audio_data.dtype == np.int32:
|
208 |
+
audio_data = audio_data.astype(np.float32) / 2147483648.0
|
209 |
+
elif audio_data.dtype != np.float32:
|
210 |
audio_data = audio_data.astype(np.float32)
|
211 |
+
|
212 |
+
# Handle stereo audio
|
213 |
if len(audio_data.shape) > 1:
|
214 |
audio_data = audio_data.mean(axis=1)
|
215 |
else:
|
216 |
audio_data = audio_input
|
217 |
sample_rate = 16000
|
218 |
|
219 |
+
# Validate audio length
|
220 |
+
if len(audio_data) < 1600: # Less than 0.1 seconds at 16kHz
|
221 |
+
return "Audio too short, please speak longer", "neutral"
|
222 |
+
|
223 |
# Normalize audio
|
224 |
if len(audio_data) > 0:
|
225 |
max_val = np.max(np.abs(audio_data))
|
226 |
if max_val > 0:
|
227 |
+
audio_data = audio_data / max_val * 0.95
|
228 |
|
229 |
# Resample to 16kHz if needed
|
230 |
if sample_rate != 16000:
|
231 |
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=16000)
|
232 |
|
233 |
+
# Speech to text with Whisper
|
234 |
result = asr_pipe(audio_data, sampling_rate=16000)
|
235 |
transcription = result['text'].strip()
|
236 |
|
237 |
+
if not transcription:
|
238 |
+
return "No speech detected", "neutral"
|
239 |
+
|
240 |
# Detect emotion from transcription
|
241 |
emotion = detect_emotion_from_text(transcription)
|
242 |
|
|
|
247 |
return "Sorry, I couldn't understand that.", "neutral"
|
248 |
|
249 |
def generate_contextual_response(user_input, emotion, conversation_manager):
|
250 |
+
"""Enhanced response generation with better emotional intelligence"""
|
251 |
try:
|
252 |
context = conversation_manager.get_context()
|
253 |
|
254 |
+
# Enhanced emotional response styles
|
255 |
emotional_prompts = {
|
256 |
+
"happy": "Respond with genuine enthusiasm and joy. Use positive language, show excitement, and celebrate with them. Be warm and energetic.",
|
257 |
+
"sad": "Respond with deep empathy and comfort. Be gentle, understanding, and supportive. Offer comfort and hope without being dismissive.",
|
258 |
+
"angry": "Respond calmly and try to help. Be patient, understanding, and try to de-escalate. Don't match their anger but acknowledge their feelings.",
|
259 |
+
"surprised": "Share in their surprise and show curiosity. Be engaging, interested, and ask thoughtful follow-up questions.",
|
260 |
+
"fearful": "Respond with reassurance and support. Be calming, protective, and offer practical help or comfort.",
|
261 |
+
"disgusted": "Respond with understanding while being helpful. Acknowledge their feelings and try to redirect positively.",
|
262 |
+
"neutral": "Respond naturally and conversationally. Be helpful, friendly, and engaging."
|
263 |
}
|
264 |
|
265 |
+
system_prompt = f"""You are Maya, a highly emotionally intelligent AI assistant with a warm, caring personality.
|
266 |
+
|
267 |
+
{emotional_prompts.get(emotion, emotional_prompts['neutral'])}
|
268 |
+
|
269 |
+
Previous conversation context:
|
270 |
+
{context}
|
271 |
+
|
272 |
+
Current user emotion detected: {emotion}
|
273 |
+
|
274 |
+
Guidelines:
|
275 |
+
- Keep responses concise but meaningful (1-2 sentences)
|
276 |
+
- Match the user's emotional tone appropriately
|
277 |
+
- Be natural and conversational
|
278 |
+
- Show genuine empathy and understanding
|
279 |
+
- Provide helpful and relevant responses
|
280 |
+
- Use natural speech patterns
|
281 |
+
- If they seem distressed, offer support
|
282 |
+
- If they're happy, celebrate with them
|
283 |
+
"""
|
284 |
|
285 |
messages = [
|
286 |
{"role": "system", "content": system_prompt},
|
287 |
{"role": "user", "content": user_input}
|
288 |
]
|
289 |
|
290 |
+
# Generate response with Qwen
|
291 |
text = qwen_tokenizer.apply_chat_template(
|
292 |
messages,
|
293 |
tokenize=False,
|
|
|
301 |
with torch.no_grad():
|
302 |
generated_ids = qwen_model.generate(
|
303 |
model_inputs.input_ids,
|
304 |
+
max_new_tokens=100,
|
305 |
do_sample=True,
|
306 |
temperature=0.7,
|
307 |
top_p=0.9,
|
308 |
+
repetition_penalty=1.1,
|
309 |
pad_token_id=qwen_tokenizer.eos_token_id
|
310 |
)
|
311 |
|
|
|
315 |
|
316 |
response = qwen_tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
317 |
|
318 |
+
# Clean up response
|
319 |
+
response = response.strip()
|
320 |
+
if response.startswith("Maya:"):
|
321 |
+
response = response[5:].strip()
|
322 |
+
|
323 |
+
return response
|
324 |
|
325 |
except Exception as e:
|
326 |
print(f"Error in response generation: {e}")
|
327 |
return "I'm sorry, I'm having trouble processing that right now. Could you please try again?"
|
328 |
|
329 |
def text_to_speech_emotional(text, emotion="neutral"):
|
330 |
+
"""Enhanced TTS with support for both Dia and Coqui"""
|
331 |
try:
|
332 |
if tts_model is None:
|
333 |
print(f"π Maya says ({emotion}): {text}")
|
|
|
337 |
if torch.cuda.is_available():
|
338 |
torch.cuda.empty_cache()
|
339 |
|
340 |
+
if tts_type == "dia":
|
341 |
+
# Dia TTS with enhanced emotional markers
|
342 |
+
emotional_markers = {
|
343 |
+
"happy": "(excited) ",
|
344 |
+
"sad": "(sad) ",
|
345 |
+
"angry": "(calm) ", # Stay calm when user is angry
|
346 |
+
"surprised": "(surprised) ",
|
347 |
+
"fearful": "(reassuring) ",
|
348 |
+
"disgusted": "(understanding) ",
|
349 |
+
"neutral": ""
|
350 |
+
}
|
351 |
+
|
352 |
+
# Enhanced text processing for Dia
|
353 |
+
enhanced_text = f"[S1] {emotional_markers.get(emotion, '')}{text}"
|
354 |
+
|
355 |
+
# Add natural pauses for longer text
|
356 |
+
if len(text) > 50:
|
357 |
+
enhanced_text = enhanced_text.replace(". ", ". (pause) ")
|
358 |
+
enhanced_text = enhanced_text.replace("! ", "! (pause) ")
|
359 |
+
enhanced_text = enhanced_text.replace("? ", "? (pause) ")
|
360 |
+
|
361 |
+
print(f"Generating Dia TTS for: {enhanced_text}")
|
362 |
+
|
363 |
+
with torch.no_grad():
|
364 |
+
audio_output = tts_model.generate(
|
365 |
+
enhanced_text,
|
366 |
+
use_torch_compile=False,
|
367 |
+
verbose=False
|
368 |
+
)
|
369 |
+
|
370 |
+
# Process Dia output
|
371 |
+
if isinstance(audio_output, torch.Tensor):
|
372 |
+
audio_output = audio_output.cpu().numpy()
|
373 |
+
|
374 |
+
# Normalize audio
|
375 |
+
if len(audio_output) > 0:
|
376 |
+
max_val = np.max(np.abs(audio_output))
|
377 |
+
if max_val > 1.0:
|
378 |
+
audio_output = audio_output / max_val * 0.95
|
379 |
+
|
380 |
+
return (44100, audio_output)
|
381 |
+
|
382 |
+
elif tts_type == "coqui":
|
383 |
+
# Coqui TTS processing
|
384 |
+
emotional_prefixes = {
|
385 |
+
"happy": "[Speaking with joy] ",
|
386 |
+
"sad": "[Speaking gently] ",
|
387 |
+
"angry": "[Speaking calmly] ",
|
388 |
+
"surprised": "[Speaking with excitement] ",
|
389 |
+
"fearful": "[Speaking reassuringly] ",
|
390 |
+
"disgusted": "[Speaking understandingly] ",
|
391 |
+
"neutral": ""
|
392 |
+
}
|
393 |
+
|
394 |
+
enhanced_text = f"{emotional_prefixes.get(emotion, '')}{text}"
|
395 |
+
|
396 |
+
print(f"Generating Coqui TTS for: {enhanced_text}")
|
397 |
+
|
398 |
+
audio_output = tts_model.tts(text=enhanced_text)
|
399 |
+
|
400 |
+
# Convert to numpy array if needed
|
401 |
+
if isinstance(audio_output, list):
|
402 |
+
audio_output = np.array(audio_output, dtype=np.float32)
|
403 |
+
elif torch.is_tensor(audio_output):
|
404 |
+
audio_output = audio_output.cpu().numpy().astype(np.float32)
|
405 |
+
|
406 |
+
# Normalize audio
|
407 |
+
if len(audio_output) > 0:
|
408 |
+
max_val = np.max(np.abs(audio_output))
|
409 |
+
if max_val > 1.0:
|
410 |
+
audio_output = audio_output / max_val * 0.95
|
411 |
+
|
412 |
+
return (22050, audio_output)
|
413 |
|
414 |
+
else:
|
415 |
+
# Text-only mode
|
416 |
+
print(f"π Maya says ({emotion}): {text}")
|
417 |
+
return None
|
418 |
+
|
419 |
except Exception as e:
|
420 |
print(f"Error in TTS: {e}")
|
421 |
print(f"π Maya says ({emotion}): {text}")
|
|
|
427 |
def start_call():
|
428 |
"""Initialize call and return greeting"""
|
429 |
conv_manager.clear()
|
430 |
+
greeting_text = "Hello! I'm Maya, your AI assistant. I'm here to chat and help you with anything you need. How are you feeling today?"
|
431 |
greeting_audio = text_to_speech_emotional(greeting_text, "happy")
|
432 |
|
433 |
+
tts_status = f"Using {tts_type.upper()} TTS" if tts_type != "none" else "Text-only mode"
|
434 |
+
return greeting_audio, greeting_text, f"π Call started! Maya is ready to chat. {tts_status}"
|
435 |
|
436 |
def process_conversation(audio_input):
|
437 |
+
"""Enhanced conversation processing pipeline"""
|
438 |
if audio_input is None:
|
439 |
return None, "Please record some audio first.", "", "β No audio input received."
|
440 |
|
|
|
442 |
# Step 1: Speech to Text + Emotion Detection
|
443 |
user_text, emotion = speech_to_text_with_emotion(audio_input)
|
444 |
|
445 |
+
if not user_text or user_text.strip() == "" or "sorry" in user_text.lower():
|
446 |
+
return None, "I didn't catch that clearly. Could you please speak a bit louder or closer to the microphone?", "", "β No clear speech detected."
|
447 |
|
448 |
# Step 2: Generate contextual response
|
449 |
ai_response = generate_contextual_response(user_text, emotion, conv_manager)
|
|
|
454 |
# Step 4: Update conversation history
|
455 |
conv_manager.add_exchange(user_text, ai_response, emotion)
|
456 |
|
457 |
+
status = f"β
Processed successfully! | Emotion: {emotion} | Exchange: {len(conv_manager.history)}/5 | TTS: {tts_type.upper()}"
|
458 |
|
459 |
return response_audio, ai_response, user_text, status
|
460 |
|
461 |
except Exception as e:
|
462 |
error_msg = f"β Error processing conversation: {str(e)}"
|
463 |
+
print(error_msg)
|
464 |
return None, "I'm sorry, I encountered an error. Please try again.", "", error_msg
|
465 |
|
466 |
def get_conversation_history():
|
467 |
"""Return formatted conversation history"""
|
468 |
if not conv_manager.history:
|
469 |
+
return "No conversation history yet. Start a call to begin chatting with Maya!"
|
470 |
|
471 |
history_text = "π **Conversation History:**\n\n"
|
472 |
for i, exchange in enumerate(conv_manager.history, 1):
|
|
|
479 |
|
480 |
def end_call():
|
481 |
"""End call and clear conversation"""
|
482 |
+
farewell_text = "Thank you for our wonderful conversation! I really enjoyed talking with you. Take care and have an amazing day!"
|
483 |
farewell_audio = text_to_speech_emotional(farewell_text, "happy")
|
484 |
conv_manager.clear()
|
485 |
|
486 |
+
return farewell_audio, farewell_text, "πβ Call ended. Thank you for chatting with Maya!"
|
487 |
|
488 |
def create_interface():
|
489 |
+
"""Create enhanced Gradio interface"""
|
490 |
with gr.Blocks(
|
491 |
+
title="Maya AI - Advanced Speech-to-Speech Assistant",
|
492 |
theme=gr.themes.Soft(),
|
493 |
css="""
|
494 |
.main-header {
|
495 |
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
496 |
border-radius: 15px;
|
497 |
+
padding: 25px;
|
498 |
text-align: center;
|
499 |
+
margin-bottom: 25px;
|
500 |
+
box-shadow: 0 8px 32px rgba(0,0,0,0.1);
|
501 |
+
}
|
502 |
+
.call-button {
|
503 |
+
background: linear-gradient(45deg, #FF6B6B, #4ECDC4) !important;
|
504 |
+
border: none !important;
|
505 |
+
box-shadow: 0 4px 15px rgba(0,0,0,0.2) !important;
|
506 |
+
}
|
507 |
+
.process-button {
|
508 |
+
background: linear-gradient(45deg, #45B7D1, #96CEB4) !important;
|
509 |
+
border: none !important;
|
510 |
+
box-shadow: 0 4px 15px rgba(0,0,0,0.2) !important;
|
511 |
+
}
|
512 |
+
.end-button {
|
513 |
+
background: linear-gradient(45deg, #FFA07A, #FF6347) !important;
|
514 |
+
border: none !important;
|
515 |
+
box-shadow: 0 4px 15px rgba(0,0,0,0.2) !important;
|
516 |
}
|
|
|
|
|
|
|
517 |
"""
|
518 |
) as demo:
|
519 |
|
520 |
gr.HTML("""
|
521 |
<div class="main-header">
|
522 |
+
<h1 style="color: white; margin: 0; font-size: 2.8em; font-weight: bold;">ποΈ Maya AI</h1>
|
523 |
+
<p style="color: white; margin: 15px 0; font-size: 1.3em;">Advanced Speech-to-Speech Conversational AI</p>
|
524 |
+
<p style="color: #E8E8E8; margin: 0; font-size: 1.1em;">Natural β’ Emotional β’ Contextual β’ Intelligent</p>
|
525 |
</div>
|
526 |
""")
|
527 |
|
528 |
with gr.Row():
|
529 |
with gr.Column(scale=1):
|
530 |
# Call Controls
|
531 |
+
gr.HTML("<h3 style='color: #333; margin-bottom: 15px;'>π Call Controls</h3>")
|
532 |
start_btn = gr.Button("π Start Call", elem_classes="call-button", size="lg")
|
533 |
end_btn = gr.Button("πβ End Call", elem_classes="end-button", size="lg")
|
534 |
|
535 |
# Audio Input
|
536 |
+
gr.HTML("<h3 style='color: #333; margin: 20px 0 15px 0;'>π€ Voice Input</h3>")
|
537 |
audio_input = gr.Audio(
|
538 |
label="Record Your Message",
|
539 |
sources=["microphone"],
|
540 |
+
type="numpy",
|
541 |
+
format="wav"
|
542 |
)
|
543 |
|
544 |
process_btn = gr.Button("π― Process Message", elem_classes="process-button", variant="primary", size="lg")
|
545 |
|
546 |
# Status Display
|
547 |
status_display = gr.Textbox(
|
548 |
+
label="π System Status",
|
549 |
interactive=False,
|
550 |
+
lines=3,
|
551 |
+
value="π System ready! Click 'Start Call' to begin your conversation with Maya."
|
552 |
)
|
553 |
|
554 |
with gr.Column(scale=2):
|
555 |
# AI Response Audio
|
556 |
+
gr.HTML("<h3 style='color: #333; margin-bottom: 15px;'>π Maya's Response</h3>")
|
557 |
response_audio = gr.Audio(
|
558 |
label="Maya's Voice Response",
|
559 |
type="numpy",
|
560 |
+
interactive=False,
|
561 |
+
autoplay=True
|
562 |
)
|
563 |
|
564 |
# Text Displays
|
|
|
567 |
user_text_display = gr.Textbox(
|
568 |
label="π€ What You Said",
|
569 |
interactive=False,
|
570 |
+
lines=4,
|
571 |
+
placeholder="Your speech will appear here after processing..."
|
572 |
)
|
573 |
|
574 |
with gr.Column():
|
575 |
ai_text_display = gr.Textbox(
|
576 |
label="π€ Maya's Response",
|
577 |
interactive=False,
|
578 |
+
lines=4,
|
579 |
placeholder="Maya's response will appear here..."
|
580 |
)
|
581 |
|
582 |
# Conversation History Section
|
583 |
with gr.Row():
|
584 |
with gr.Column():
|
585 |
+
gr.HTML("<h3 style='color: #333; margin: 25px 0 15px 0;'>π Conversation History</h3>")
|
586 |
+
history_btn = gr.Button("π Show Conversation History", variant="secondary", size="lg")
|
587 |
history_display = gr.Markdown(
|
588 |
+
value="No conversation history yet. Start a call to begin chatting with Maya!",
|
589 |
label="Conversation Log"
|
590 |
)
|
591 |
|
|
|
611 |
outputs=[history_display]
|
612 |
)
|
613 |
|
614 |
+
# Enhanced Instructions
|
615 |
gr.HTML("""
|
616 |
+
<div style="margin-top: 30px; padding: 25px; background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%); border-radius: 15px; border: 1px solid #dee2e6;">
|
617 |
+
<h3 style="color: #495057; margin-bottom: 20px;">π‘ How to Use Maya AI:</h3>
|
618 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 20px;">
|
619 |
+
<div>
|
620 |
+
<h4 style="color: #007bff;">π Getting Started:</h4>
|
621 |
+
<ol style="color: #495057;">
|
622 |
+
<li><strong>Start Call:</strong> Click "π Start Call" to initialize Maya</li>
|
623 |
+
<li><strong>Record:</strong> Use the microphone to record your message</li>
|
624 |
+
<li><strong>Process:</strong> Click "π― Process Message" to get Maya's response</li>
|
625 |
+
<li><strong>Listen:</strong> Maya will respond with natural, emotional speech</li>
|
626 |
+
<li><strong>Continue:</strong> Keep chatting (up to 5 exchanges with context)</li>
|
627 |
+
<li><strong>End:</strong> Click "πβ End Call" when finished</li>
|
628 |
+
</ol>
|
629 |
+
</div>
|
630 |
+
<div>
|
631 |
+
<h4 style="color: #28a745;">π Advanced Features:</h4>
|
632 |
+
<ul style="color: #495057;">
|
633 |
+
<li>π€ <strong>Speech Recognition:</strong> Powered by OpenAI Whisper</li>
|
634 |
+
<li>π§ <strong>Smart Responses:</strong> Using Qwen2.5-1.5B LLM</li>
|
635 |
+
<li>π <strong>Emotion Detection:</strong> Advanced emotion recognition from speech</li>
|
636 |
+
<li>π <strong>Natural TTS:</strong> High-quality speech synthesis with Dia TTS</li>
|
637 |
+
<li>π <strong>Context Memory:</strong> Remembers conversation flow and context</li>
|
638 |
+
<li>β€οΈ <strong>Emotional Intelligence:</strong> Responds appropriately to your emotions</li>
|
639 |
+
</ul>
|
640 |
+
</div>
|
641 |
+
</div>
|
642 |
|
643 |
+
<div style="margin-top: 20px; padding: 15px; background: #d1ecf1; border-radius: 8px; border-left: 4px solid #bee5eb;">
|
644 |
+
<p style="margin: 0; color: #0c5460;"><strong>π‘ Pro Tip:</strong> Speak clearly and naturally. Maya can detect emotions like happiness, sadness, anger, surprise, fear, and disgust, and will respond accordingly to provide the best conversational experience!</p>
|
645 |
+
</div>
|
|
|
|
|
|
|
|
|
|
|
646 |
</div>
|
647 |
""")
|
648 |
|
|
|
650 |
|
651 |
if __name__ == "__main__":
|
652 |
print("π Initializing Maya AI System...")
|
|
|
653 |
|
654 |
+
# Check system info
|
655 |
+
check_system_info()
|
|
|
|
|
|
|
656 |
|
657 |
if load_models():
|
658 |
print("β
All models loaded successfully!")
|
659 |
+
print(f"ποΈ TTS Mode: {tts_type.upper()}")
|
660 |
print("π Launching Maya AI Interface...")
|
661 |
|
662 |
demo = create_interface()
|