Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import BlipProcessor, BlipForConditionalGeneration
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
from io import BytesIO
|
6 |
+
import requests
|
7 |
+
|
8 |
+
# Load model and processor
|
9 |
+
model_name = "Salesforce/blip-image-captioning-large"
|
10 |
+
processor = BlipProcessor.from_pretrained(model_name)
|
11 |
+
model = BlipForConditionalGeneration.from_pretrained(model_name)
|
12 |
+
|
13 |
+
def generate_caption(image):
|
14 |
+
# Preprocess the image
|
15 |
+
inputs = processor(image, return_tensors="pt")
|
16 |
+
# Generate caption
|
17 |
+
with torch.no_grad():
|
18 |
+
outputs = model.generate(**inputs)
|
19 |
+
# Decode and return caption
|
20 |
+
caption = processor.decode(outputs[0], skip_special_tokens=True)
|
21 |
+
return caption
|
22 |
+
|
23 |
+
# Create a Gradio interface
|
24 |
+
iface = gr.Interface(fn=generate_caption, inputs="image", outputs="text")
|
25 |
+
iface.launch(share=True) # `share=True` to get a public link
|