Spaces:
Runtime error
Runtime error
import os | |
from flask import Flask, request, jsonify, flash, redirect, url_for | |
import torch | |
import torch.nn.functional as F | |
import torchaudio | |
from transformers import AutoConfig, Wav2Vec2FeatureExtractor, Wav2Vec2ForSequenceClassification, Wav2Vec2Processor, Wav2Vec2ConformerForCTC | |
import librosa | |
import jellyfish | |
from werkzeug.utils import secure_filename | |
import gradio as gr | |
def speech_file_to_array_fn(path, sampling_rate): | |
try: | |
speech_array, _sampling_rate = torchaudio.load(path) | |
resampler = torchaudio.transforms.Resample(_sampling_rate) | |
speech = resampler(speech_array[1]).squeeze().numpy() | |
return speech | |
except: | |
speech_array, _sampling_rate = torchaudio.load(path) | |
resampler = torchaudio.transforms.Resample(_sampling_rate) | |
speech = resampler(speech_array).squeeze().numpy() | |
return speech | |
def predict(path, sampling_rate, feature_extractor, device, model, config): | |
speech = speech_file_to_array_fn(path, sampling_rate) | |
inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) | |
inputs = {key: inputs[key].to(device) for key in inputs} | |
with torch.no_grad(): | |
logits = model(**inputs).logits | |
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] | |
outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] | |
return outputs | |
def get_speech_to_text(model, processor, audio_path): | |
data, sample_rate = librosa.load(audio_path, sr=16000) | |
input_values = processor(data, return_tensors="pt", padding="longest").input_values | |
logits = model(input_values).logits | |
predicted_ids = torch.argmax(logits, dim=-1) | |
transcription = processor.batch_decode(predicted_ids) | |
return transcription | |
# def get_percentage_match(transcription, text): | |
# return jellyfish.damerau_levenshtein_distance(transcription, text) | |
def get_sos_status(transcription, key_phrase): | |
ct = 0 | |
for words in key_phrase.split(" "): | |
# print(type(words)) | |
if transcription[0].find(words) != -1: | |
ct = ct + 1 | |
if ct == 3: | |
sos = 1 | |
else: | |
sos = 0 | |
return sos | |
def main(audio): | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
SPT_MODEL = "D:\kaggle_practice\KJSCE_hack\SERModel\SPT_model" | |
model_name_or_path = "D:\kaggle_practice\KJSCE_hack\SERModel\SER_model" | |
config = AutoConfig.from_pretrained(model_name_or_path) | |
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path) | |
sampling_rate = feature_extractor.sampling_rate | |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name_or_path).to(device) | |
processor = Wav2Vec2Processor.from_pretrained(SPT_MODEL) | |
model_SPT = Wav2Vec2ConformerForCTC.from_pretrained(SPT_MODEL) | |
# path = r'testing_audios\03-01-06-02-02-01-01.wav' | |
outputs = predict(audio, sampling_rate, feature_extractor, device = device, model = model, config = config) | |
transcription = get_speech_to_text(model_SPT, processor, audio_path=audio) | |
key_phrase = "DOGS DOOR SITTING" | |
status = get_sos_status(transcription, key_phrase) | |
max_score = 0 | |
emotion = "" | |
for i in outputs: | |
if float(i['Score'][:-1]) > max_score: | |
max_score = float(i['Score'][:-1]) | |
emotion = i['Emotion'] | |
if emotion in ['disgust', 'fear', 'sadness']: | |
emotion = 'negative' | |
elif emotion == 'neutral': | |
emotion = 'neutral' | |
else: | |
emotion = 'positive' | |
if emotion == 'negative' or status == 1: | |
sos = 1 | |
else: | |
sos = 0 | |
return [emotion, transcription, sos] | |
gr.Interface( | |
fn=main, | |
inputs=[ | |
gr.inputs.Audio(source="upload", type="filepath") | |
], | |
outputs=[ | |
"textbox" | |
], | |
live=True).launch() |