Spaces:
Running
Running
Update utils/forex_signals.py
Browse files- utils/forex_signals.py +55 -61
utils/forex_signals.py
CHANGED
@@ -1,71 +1,65 @@
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
3 |
-
import talib
|
4 |
-
from datetime import datetime, timedelta
|
5 |
|
6 |
-
|
7 |
-
# Placeholder: Retrieve historical data for each currency pair (e.g., from an API like Yahoo Finance or a local dataset)
|
8 |
-
# In practice, you'll fetch this data dynamically or from a database.
|
9 |
-
currency_pairs = additional_pairs if additional_pairs else ["EUR/USD", "GBP/USD", "AUD/USD"] # Example pairs
|
10 |
-
signals = []
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
data = fetch_historical_data(pair) # Replace with real function to fetch data
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
if roi > max_roi:
|
43 |
-
max_roi = roi
|
44 |
-
exit_signal = "Sell"
|
45 |
-
exit_time = data.index[j]
|
46 |
-
signal_strength = 100 # Simplified for now (could be refined further)
|
47 |
-
|
48 |
-
# Append to the list of signals
|
49 |
-
if entry_signal and exit_signal:
|
50 |
-
signals.append({
|
51 |
-
'currency_pair': pair,
|
52 |
-
'entry_time': entry_time,
|
53 |
-
'exit_time': exit_time,
|
54 |
-
'roi': max_roi,
|
55 |
-
'signal_strength': signal_strength
|
56 |
-
})
|
57 |
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
-
|
64 |
-
# Placeholder function to fetch historical price data for a given currency pair
|
65 |
-
# Ideally, replace this with actual API calls to get real-time data
|
66 |
-
data = pd.DataFrame({
|
67 |
-
'date': pd.date_range(start="2025-01-01", periods=100, freq='15T'),
|
68 |
-
'close': np.random.rand(100) * 1.5 + 1.1 # Random price data (replace with actual data)
|
69 |
-
})
|
70 |
-
data.set_index('date', inplace=True)
|
71 |
-
return data
|
|
|
1 |
import pandas as pd
|
2 |
import numpy as np
|
|
|
|
|
3 |
|
4 |
+
# Define the function to calculate technical indicators
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
def calculate_sma(data, window=14):
|
7 |
+
"""Calculate Simple Moving Average (SMA)"""
|
8 |
+
return data['Close'].rolling(window=window).mean()
|
|
|
9 |
|
10 |
+
def calculate_rsi(data, window=14):
|
11 |
+
"""Calculate Relative Strength Index (RSI)"""
|
12 |
+
delta = data['Close'].diff()
|
13 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=window).mean()
|
14 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=window).mean()
|
15 |
+
rs = gain / loss
|
16 |
+
rsi = 100 - (100 / (1 + rs))
|
17 |
+
return rsi
|
18 |
|
19 |
+
def calculate_bollinger_bands(data, window=20, num_std_dev=2):
|
20 |
+
"""Calculate Bollinger Bands"""
|
21 |
+
sma = calculate_sma(data, window)
|
22 |
+
rolling_std = data['Close'].rolling(window=window).std()
|
23 |
+
upper_band = sma + (rolling_std * num_std_dev)
|
24 |
+
lower_band = sma - (rolling_std * num_std_dev)
|
25 |
+
return upper_band, lower_band
|
26 |
|
27 |
+
def generate_forex_signals(trading_capital, market_risk, user_timezone, additional_pairs=None):
|
28 |
+
"""Generate trading signals for the Forex market"""
|
29 |
+
# Example: Fetch historical data for currency pairs (use your data source here)
|
30 |
+
data = pd.read_csv('historical_forex_data.csv') # Replace with real data source
|
31 |
+
signals = []
|
32 |
+
|
33 |
+
# Generate signals for multiple pairs (additional_pairs can be used to loop through them)
|
34 |
+
currency_pairs = additional_pairs if additional_pairs else ['EUR/USD', 'GBP/USD', 'USD/JPY', 'AUD/USD']
|
35 |
+
for pair in currency_pairs:
|
36 |
+
pair_data = data[data['Currency Pair'] == pair]
|
37 |
|
38 |
+
# Calculate technical indicators
|
39 |
+
sma = calculate_sma(pair_data)
|
40 |
+
rsi = calculate_rsi(pair_data)
|
41 |
+
upper_band, lower_band = calculate_bollinger_bands(pair_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
# Example signal generation logic (this can be customized)
|
44 |
+
for i in range(len(pair_data)):
|
45 |
+
if rsi[i] < 30 and pair_data['Close'][i] < lower_band[i]: # Buy signal
|
46 |
+
signals.append({
|
47 |
+
'currency_pair': pair,
|
48 |
+
'entry_time': pair_data['Date'][i],
|
49 |
+
'exit_time': pair_data['Date'][i] + pd.Timedelta(hours=2), # Example exit time
|
50 |
+
'roi': np.random.uniform(0.1, 1), # Simulated ROI, adjust accordingly
|
51 |
+
'signal_strength': np.random.uniform(50, 100) # Simulated signal strength
|
52 |
+
})
|
53 |
+
elif rsi[i] > 70 and pair_data['Close'][i] > upper_band[i]: # Sell signal
|
54 |
+
signals.append({
|
55 |
+
'currency_pair': pair,
|
56 |
+
'entry_time': pair_data['Date'][i],
|
57 |
+
'exit_time': pair_data['Date'][i] + pd.Timedelta(hours=2), # Example exit time
|
58 |
+
'roi': np.random.uniform(0.1, 1), # Simulated ROI, adjust accordingly
|
59 |
+
'signal_strength': np.random.uniform(50, 100) # Simulated signal strength
|
60 |
+
})
|
61 |
+
|
62 |
+
# Choose the best signal
|
63 |
+
best_signal = max(signals, key=lambda x: x['roi']) if signals else {}
|
64 |
|
65 |
+
return {"best_signal": best_signal, "all_signals": signals}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|