Spaces:
Running
Running
Update utils/model_inference.py
Browse files- utils/model_inference.py +35 -19
utils/model_inference.py
CHANGED
@@ -1,26 +1,42 @@
|
|
1 |
-
|
2 |
-
import
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
"""
|
6 |
-
Generate signals based on trading capital and risk level.
|
7 |
-
"""
|
8 |
-
# Fetch stop loss and take profit percentages based on risk level
|
9 |
-
risk_params = RISK_LEVELS[risk_level]
|
10 |
-
stop_loss = risk_params["stop_loss"]
|
11 |
-
take_profit = risk_params["take_profit"]
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
|
|
20 |
return {
|
21 |
-
"currency_pair":
|
22 |
"entry_time": entry_time,
|
23 |
-
"exit_time":
|
24 |
-
"roi":
|
25 |
"signal_strength": signal_strength
|
26 |
}
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
from datetime import datetime
|
4 |
+
import pytz
|
5 |
|
6 |
+
# Import your models and other necessary utilities here
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
def generate_forex_signals(trading_capital, market_risk, user_timezone):
|
9 |
+
# Ensure the user timezone is valid
|
10 |
+
try:
|
11 |
+
user_tz = pytz.timezone(user_timezone)
|
12 |
+
except pytz.UnknownTimeZoneError:
|
13 |
+
raise ValueError("Invalid timezone entered. Please check the format.")
|
14 |
+
|
15 |
+
# Example of how you might process trading capital and risk level:
|
16 |
+
# Assume this logic is based on the user input for market risk
|
17 |
+
risk_level = {'Low': 0.01, 'Medium': 0.03, 'High': 0.05}
|
18 |
+
|
19 |
+
if market_risk not in risk_level:
|
20 |
+
raise ValueError("Invalid risk level. Choose from Low, Medium, High.")
|
21 |
+
|
22 |
+
risk_percentage = risk_level[market_risk]
|
23 |
+
|
24 |
+
# Perform model inference based on the user's inputs:
|
25 |
+
# For example, load the model and predict
|
26 |
+
# signal = model.predict(features)
|
27 |
+
|
28 |
+
# Dummy signal generation (Replace with your model inference logic)
|
29 |
+
currency_pair = "EUR/USD"
|
30 |
+
entry_time = datetime.now(user_tz).strftime("%Y-%m-%d %H:%M:%S")
|
31 |
+
exit_time = (datetime.now(user_tz) + pd.Timedelta(hours=2)).strftime("%Y-%m-%d %H:%M:%S")
|
32 |
+
roi = np.random.uniform(5, 15) # Random ROI between 5% and 15%
|
33 |
+
signal_strength = np.random.uniform(0.7, 1.0) # Random strength between 0.7 and 1.0
|
34 |
|
35 |
+
# Return the result as a dictionary
|
36 |
return {
|
37 |
+
"currency_pair": currency_pair,
|
38 |
"entry_time": entry_time,
|
39 |
+
"exit_time": exit_time,
|
40 |
+
"roi": roi,
|
41 |
"signal_strength": signal_strength
|
42 |
}
|