Devendra21 commited on
Commit
2e3ec69
·
verified ·
1 Parent(s): 79384a6

Update utils/model_inference.py

Browse files
Files changed (1) hide show
  1. utils/model_inference.py +35 -19
utils/model_inference.py CHANGED
@@ -1,26 +1,42 @@
1
- from config import RISK_LEVELS
2
- import random
 
 
3
 
4
- def generate_forex_signals(capital, risk_level):
5
- """
6
- Generate signals based on trading capital and risk level.
7
- """
8
- # Fetch stop loss and take profit percentages based on risk level
9
- risk_params = RISK_LEVELS[risk_level]
10
- stop_loss = risk_params["stop_loss"]
11
- take_profit = risk_params["take_profit"]
12
 
13
- # Simulate ROI based on risk level and trading capital
14
- roi = random.uniform(take_profit * 80, take_profit * 120) # Randomized ROI in range
15
- signal_strength = "High" if roi > (take_profit * 100) else "Medium"
16
-
17
- # Entry and exit logic
18
- entry_time = "Generated dynamically in app.py" # Placeholder
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
 
20
  return {
21
- "currency_pair": random.choice(["EUR/USD", "GBP/USD", "USD/JPY", "AUD/USD", "USD/CHF"]),
22
  "entry_time": entry_time,
23
- "exit_time": "Entry time + 2 hours",
24
- "roi": round(roi, 2),
25
  "signal_strength": signal_strength
26
  }
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ from datetime import datetime
4
+ import pytz
5
 
6
+ # Import your models and other necessary utilities here
 
 
 
 
 
 
 
7
 
8
+ def generate_forex_signals(trading_capital, market_risk, user_timezone):
9
+ # Ensure the user timezone is valid
10
+ try:
11
+ user_tz = pytz.timezone(user_timezone)
12
+ except pytz.UnknownTimeZoneError:
13
+ raise ValueError("Invalid timezone entered. Please check the format.")
14
+
15
+ # Example of how you might process trading capital and risk level:
16
+ # Assume this logic is based on the user input for market risk
17
+ risk_level = {'Low': 0.01, 'Medium': 0.03, 'High': 0.05}
18
+
19
+ if market_risk not in risk_level:
20
+ raise ValueError("Invalid risk level. Choose from Low, Medium, High.")
21
+
22
+ risk_percentage = risk_level[market_risk]
23
+
24
+ # Perform model inference based on the user's inputs:
25
+ # For example, load the model and predict
26
+ # signal = model.predict(features)
27
+
28
+ # Dummy signal generation (Replace with your model inference logic)
29
+ currency_pair = "EUR/USD"
30
+ entry_time = datetime.now(user_tz).strftime("%Y-%m-%d %H:%M:%S")
31
+ exit_time = (datetime.now(user_tz) + pd.Timedelta(hours=2)).strftime("%Y-%m-%d %H:%M:%S")
32
+ roi = np.random.uniform(5, 15) # Random ROI between 5% and 15%
33
+ signal_strength = np.random.uniform(0.7, 1.0) # Random strength between 0.7 and 1.0
34
 
35
+ # Return the result as a dictionary
36
  return {
37
+ "currency_pair": currency_pair,
38
  "entry_time": entry_time,
39
+ "exit_time": exit_time,
40
+ "roi": roi,
41
  "signal_strength": signal_strength
42
  }