Spaces:
Running
Running
Update utils/forex_signals.py
Browse files- utils/forex_signals.py +42 -34
utils/forex_signals.py
CHANGED
@@ -4,78 +4,86 @@ import numpy as np
|
|
4 |
|
5 |
API_KEY = "89SEdLScHxHk6j8J9OoH4sLFS3Mri4oW"
|
6 |
|
7 |
-
CURRENCY_PAIRS = [
|
8 |
-
"EUR/USD", "GBP/USD", "USD/JPY", "AUD/USD",
|
9 |
-
"CAD/JPY", "NZD/USD", "CHF/JPY", "AUD/JPY",
|
10 |
-
"GBP/CHF", "EUR/GBP"
|
11 |
-
]
|
12 |
-
|
13 |
-
|
14 |
def fetch_forex_data(currency_pair):
|
15 |
try:
|
16 |
-
# Convert
|
17 |
formatted_pair = currency_pair.replace("/", "")
|
18 |
url = f"https://financialmodelingprep.com/api/v3/forex/{formatted_pair}?apikey={API_KEY}"
|
19 |
response = requests.get(url)
|
20 |
response.raise_for_status()
|
21 |
|
22 |
data = response.json()
|
23 |
-
|
24 |
if "historical" in data and len(data["historical"]) > 0:
|
25 |
-
|
|
|
|
|
|
|
26 |
else:
|
27 |
print(f"No data available for {currency_pair}.")
|
28 |
return None
|
29 |
except Exception as e:
|
30 |
-
print(f"Error fetching data for {currency_pair}: {e}")
|
31 |
return None
|
32 |
|
33 |
|
34 |
def calculate_indicators(df):
|
35 |
-
if df is None or df.empty:
|
36 |
-
return None
|
37 |
-
|
38 |
try:
|
39 |
df["SMA_50"] = df["close"].rolling(window=50).mean()
|
40 |
df["SMA_200"] = df["close"].rolling(window=200).mean()
|
41 |
df["RSI"] = compute_rsi(df["close"])
|
42 |
return df
|
43 |
except Exception as e:
|
44 |
-
print(f"Error calculating indicators: {e}")
|
45 |
return None
|
46 |
|
47 |
|
48 |
def compute_rsi(series, period=14):
|
49 |
-
delta = series.diff(
|
50 |
-
gain = delta.where(delta > 0, 0)
|
51 |
-
loss = -delta.where(delta < 0, 0)
|
52 |
-
|
53 |
-
avg_gain = gain.rolling(window=period).mean()
|
54 |
-
avg_loss = loss.rolling(window=period).mean()
|
55 |
-
|
56 |
-
rs = avg_gain / avg_loss
|
57 |
rsi = 100 - (100 / (1 + rs))
|
58 |
return rsi
|
59 |
|
60 |
|
61 |
-
def generate_forex_signals():
|
62 |
-
|
63 |
-
|
64 |
-
for pair in CURRENCY_PAIRS:
|
65 |
-
print(f"Processing currency pair: {pair}")
|
66 |
|
|
|
|
|
67 |
df = fetch_forex_data(pair)
|
68 |
-
if df is None:
|
69 |
continue
|
70 |
|
71 |
df = calculate_indicators(df)
|
72 |
if df is None or df.empty:
|
73 |
continue
|
74 |
|
75 |
-
# Check for crossover signals
|
76 |
if df["SMA_50"].iloc[-1] > df["SMA_200"].iloc[-1] and df["RSI"].iloc[-1] < 70:
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
elif df["SMA_50"].iloc[-1] < df["SMA_200"].iloc[-1] and df["RSI"].iloc[-1] > 30:
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
API_KEY = "89SEdLScHxHk6j8J9OoH4sLFS3Mri4oW"
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
def fetch_forex_data(currency_pair):
|
8 |
try:
|
9 |
+
# Convert currency pair to API format (e.g., EUR/USD -> EURUSD)
|
10 |
formatted_pair = currency_pair.replace("/", "")
|
11 |
url = f"https://financialmodelingprep.com/api/v3/forex/{formatted_pair}?apikey={API_KEY}"
|
12 |
response = requests.get(url)
|
13 |
response.raise_for_status()
|
14 |
|
15 |
data = response.json()
|
|
|
16 |
if "historical" in data and len(data["historical"]) > 0:
|
17 |
+
df = pd.DataFrame(data["historical"])
|
18 |
+
df["close"] = pd.to_numeric(df["close"], errors="coerce")
|
19 |
+
df.dropna(inplace=True)
|
20 |
+
return df
|
21 |
else:
|
22 |
print(f"No data available for {currency_pair}.")
|
23 |
return None
|
24 |
except Exception as e:
|
25 |
+
print(f"Error fetching data for {currency_pair}: {str(e)}")
|
26 |
return None
|
27 |
|
28 |
|
29 |
def calculate_indicators(df):
|
|
|
|
|
|
|
30 |
try:
|
31 |
df["SMA_50"] = df["close"].rolling(window=50).mean()
|
32 |
df["SMA_200"] = df["close"].rolling(window=200).mean()
|
33 |
df["RSI"] = compute_rsi(df["close"])
|
34 |
return df
|
35 |
except Exception as e:
|
36 |
+
print(f"Error calculating indicators: {str(e)}")
|
37 |
return None
|
38 |
|
39 |
|
40 |
def compute_rsi(series, period=14):
|
41 |
+
delta = series.diff()
|
42 |
+
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
|
43 |
+
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
|
44 |
+
rs = gain / loss
|
|
|
|
|
|
|
|
|
45 |
rsi = 100 - (100 / (1 + rs))
|
46 |
return rsi
|
47 |
|
48 |
|
49 |
+
def generate_forex_signals(trading_capital, market_risk, currency_pairs):
|
50 |
+
all_signals = []
|
51 |
+
best_signal = None
|
|
|
|
|
52 |
|
53 |
+
for pair in currency_pairs:
|
54 |
+
print(f"Processing {pair}...")
|
55 |
df = fetch_forex_data(pair)
|
56 |
+
if df is None or df.empty:
|
57 |
continue
|
58 |
|
59 |
df = calculate_indicators(df)
|
60 |
if df is None or df.empty:
|
61 |
continue
|
62 |
|
|
|
63 |
if df["SMA_50"].iloc[-1] > df["SMA_200"].iloc[-1] and df["RSI"].iloc[-1] < 70:
|
64 |
+
signal = {
|
65 |
+
"currency_pair": pair,
|
66 |
+
"entry_time": df["date"].iloc[-1],
|
67 |
+
"exit_time": df["date"].iloc[-1], # Placeholder; use a model to predict exit
|
68 |
+
"roi": np.random.uniform(1, 3), # Simulated ROI
|
69 |
+
"signal_strength": "Strong Buy"
|
70 |
+
}
|
71 |
+
all_signals.append(signal)
|
72 |
elif df["SMA_50"].iloc[-1] < df["SMA_200"].iloc[-1] and df["RSI"].iloc[-1] > 30:
|
73 |
+
signal = {
|
74 |
+
"currency_pair": pair,
|
75 |
+
"entry_time": df["date"].iloc[-1],
|
76 |
+
"exit_time": df["date"].iloc[-1], # Placeholder; use a model to predict exit
|
77 |
+
"roi": np.random.uniform(-3, -1), # Simulated ROI
|
78 |
+
"signal_strength": "Strong Sell"
|
79 |
+
}
|
80 |
+
all_signals.append(signal)
|
81 |
+
|
82 |
+
# Determine the best signal based on ROI
|
83 |
+
if all_signals:
|
84 |
+
best_signal = max(all_signals, key=lambda x: x["roi"])
|
85 |
+
|
86 |
+
return {
|
87 |
+
"all_signals": all_signals,
|
88 |
+
"best_signal": best_signal
|
89 |
+
}
|