Devendra21 commited on
Commit
c6a1f6c
·
verified ·
1 Parent(s): a57c164

Update utils/model_inference.py

Browse files
Files changed (1) hide show
  1. utils/model_inference.py +15 -4
utils/model_inference.py CHANGED
@@ -1,9 +1,20 @@
1
  import datetime
2
  import numpy as np
3
- from utils import fetch_forex_data, calculate_technical_indicators
 
4
 
5
- # Function to generate forex signals
6
  def generate_forex_signals(trading_capital, market_risk, timezone):
 
 
 
 
 
 
 
 
 
 
 
7
  # Define the top 10 most popular currency pairs
8
  currency_pairs = [
9
  "EUR/USD", "GBP/USD", "USD/JPY", "AUD/USD", "USD/CAD",
@@ -16,14 +27,14 @@ def generate_forex_signals(trading_capital, market_risk, timezone):
16
  # Fetch historical data for the currency pair
17
  data = fetch_forex_data(pair, timeframe="15m")
18
 
19
- # Calculate technical indicators (e.g., RSI, MACD, Bollinger Bands)
20
  indicators = calculate_technical_indicators(data)
21
 
22
  # Generate trade signal
23
  entry_time = data.index[-1]
24
  exit_time = entry_time + datetime.timedelta(minutes=15)
25
 
26
- roi = np.random.uniform(10, 20) # Random ROI between 10% and 20% for alpha signals
27
  signal_strength = np.random.uniform(80, 100) # Random signal strength (80%-100%)
28
 
29
  # Calculate Stop-Loss and Take-Profit levels based on risk
 
1
  import datetime
2
  import numpy as np
3
+ from utils.fetch_forex_data import fetch_forex_data
4
+ from utils.calculate_technical_indicators import calculate_technical_indicators
5
 
 
6
  def generate_forex_signals(trading_capital, market_risk, timezone):
7
+ """
8
+ Generate forex trading signals based on technical indicators.
9
+
10
+ Args:
11
+ trading_capital (float): User's trading capital in USD.
12
+ market_risk (str): Risk level ("Low", "Medium", "High").
13
+ timezone (str): User's timezone (e.g., "UTC").
14
+
15
+ Returns:
16
+ dict: Dictionary containing the best signal and all generated signals.
17
+ """
18
  # Define the top 10 most popular currency pairs
19
  currency_pairs = [
20
  "EUR/USD", "GBP/USD", "USD/JPY", "AUD/USD", "USD/CAD",
 
27
  # Fetch historical data for the currency pair
28
  data = fetch_forex_data(pair, timeframe="15m")
29
 
30
+ # Calculate technical indicators
31
  indicators = calculate_technical_indicators(data)
32
 
33
  # Generate trade signal
34
  entry_time = data.index[-1]
35
  exit_time = entry_time + datetime.timedelta(minutes=15)
36
 
37
+ roi = np.random.uniform(10, 20) # Random ROI between 10% and 20%
38
  signal_strength = np.random.uniform(80, 100) # Random signal strength (80%-100%)
39
 
40
  # Calculate Stop-Loss and Take-Profit levels based on risk