Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -22,14 +22,15 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
22 |
model = model.to(device)
|
23 |
model.eval()
|
24 |
|
25 |
-
# Define the image transformations
|
26 |
transform = transforms.Compose([
|
27 |
transforms.Resize((224, 224)),
|
28 |
transforms.ToTensor(),
|
29 |
-
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
|
|
30 |
])
|
31 |
|
32 |
-
# Define class labels
|
33 |
class_labels = [
|
34 |
"Spraydosen", "Lebensmitteldosen_aus_Aluminium", "Getränkedosen_aus_Aluminium",
|
35 |
"Pappkartons", "Verpackungen_aus_Pappe", "Kleidung", "Kaffeekränzchen",
|
@@ -43,9 +44,10 @@ class_labels = [
|
|
43 |
"Teebeutel"
|
44 |
]
|
45 |
|
|
|
46 |
class_to_tonne = {
|
47 |
"Spraydosen": "Gelbe Tonne",
|
48 |
-
"
|
49 |
"Getränkedosen_aus_Aluminium": "Gelbe Tonne",
|
50 |
"Plastiktüten": "Gelbe Tonne",
|
51 |
"Wasserflaschen_aus_Kunststoff": "Gelbe Tonne",
|
@@ -67,7 +69,7 @@ class_to_tonne = {
|
|
67 |
"Teebeutel": "Biomüll",
|
68 |
"Getränkeflaschen_aus_Glas": "Altglas",
|
69 |
"Lebensmittelgläser_aus_Glas": "Altglas",
|
70 |
-
"
|
71 |
"Kleidung": "Restmüll",
|
72 |
"Schuhe": "Restmüll",
|
73 |
"Styroporbecher": "Restmüll",
|
@@ -75,22 +77,10 @@ class_to_tonne = {
|
|
75 |
"Mülltüten_aus_Kunststoff": "Restmüll"
|
76 |
}
|
77 |
|
78 |
-
|
79 |
-
# Prediction function
|
80 |
-
def predict_image(image):
|
81 |
-
if image.mode != "RGB":
|
82 |
-
image = image.convert("RGB")
|
83 |
-
input_tensor = transform(image).unsqueeze(0).to(model.device)
|
84 |
-
with torch.no_grad():
|
85 |
-
outputs = model(input_tensor)
|
86 |
-
_, predicted = torch.max(outputs, 1)
|
87 |
-
label = class_labels[predicted.item()]
|
88 |
-
tonne = class_to_tonne.get(label, "Unbekannt")
|
89 |
-
return label.replace("_", " ").capitalize(), tonne
|
90 |
-
|
91 |
-
# Gradio interface setup
|
92 |
with gr.Blocks(title="Abfallerkennung mit KI 🗑️") as demo:
|
93 |
gr.Markdown("### Lade ein Bild hoch und erfahre, in welche Tonne der Abfall gehört.")
|
|
|
94 |
image_input = gr.Image(type="pil", label="Bild hochladen")
|
95 |
output_label = gr.Textbox(label="Vorhersage")
|
96 |
output_tonne = gr.Textbox(label="Richtiger Abfallbehälter")
|
@@ -99,7 +89,7 @@ with gr.Blocks(title="Abfallerkennung mit KI 🗑️") as demo:
|
|
99 |
def analyze(image):
|
100 |
if image.mode != "RGB":
|
101 |
image = image.convert("RGB")
|
102 |
-
input_tensor = transform(image).unsqueeze(0).to(
|
103 |
with torch.no_grad():
|
104 |
outputs = model(input_tensor)
|
105 |
_, predicted = torch.max(outputs, 1)
|
|
|
22 |
model = model.to(device)
|
23 |
model.eval()
|
24 |
|
25 |
+
# Define the image transformations
|
26 |
transform = transforms.Compose([
|
27 |
transforms.Resize((224, 224)),
|
28 |
transforms.ToTensor(),
|
29 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
30 |
+
std=[0.229, 0.224, 0.225])
|
31 |
])
|
32 |
|
33 |
+
# Define class labels (German)
|
34 |
class_labels = [
|
35 |
"Spraydosen", "Lebensmitteldosen_aus_Aluminium", "Getränkedosen_aus_Aluminium",
|
36 |
"Pappkartons", "Verpackungen_aus_Pappe", "Kleidung", "Kaffeekränzchen",
|
|
|
44 |
"Teebeutel"
|
45 |
]
|
46 |
|
47 |
+
# Mapping classes to correct trash bin
|
48 |
class_to_tonne = {
|
49 |
"Spraydosen": "Gelbe Tonne",
|
50 |
+
"Lebensmitteldosen_aus_Aluminium": "Gelbe Tonne",
|
51 |
"Getränkedosen_aus_Aluminium": "Gelbe Tonne",
|
52 |
"Plastiktüten": "Gelbe Tonne",
|
53 |
"Wasserflaschen_aus_Kunststoff": "Gelbe Tonne",
|
|
|
69 |
"Teebeutel": "Biomüll",
|
70 |
"Getränkeflaschen_aus_Glas": "Altglas",
|
71 |
"Lebensmittelgläser_aus_Glas": "Altglas",
|
72 |
+
"Kosmetikbehälter_aus_Glas": "Altglas",
|
73 |
"Kleidung": "Restmüll",
|
74 |
"Schuhe": "Restmüll",
|
75 |
"Styroporbecher": "Restmüll",
|
|
|
77 |
"Mülltüten_aus_Kunststoff": "Restmüll"
|
78 |
}
|
79 |
|
80 |
+
# Gradio Blocks UI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
with gr.Blocks(title="Abfallerkennung mit KI 🗑️") as demo:
|
82 |
gr.Markdown("### Lade ein Bild hoch und erfahre, in welche Tonne der Abfall gehört.")
|
83 |
+
|
84 |
image_input = gr.Image(type="pil", label="Bild hochladen")
|
85 |
output_label = gr.Textbox(label="Vorhersage")
|
86 |
output_tonne = gr.Textbox(label="Richtiger Abfallbehälter")
|
|
|
89 |
def analyze(image):
|
90 |
if image.mode != "RGB":
|
91 |
image = image.convert("RGB")
|
92 |
+
input_tensor = transform(image).unsqueeze(0).to(device)
|
93 |
with torch.no_grad():
|
94 |
outputs = model(input_tensor)
|
95 |
_, predicted = torch.max(outputs, 1)
|