DeepInfra / deepinfra.py
sujalrajpoot's picture
Update deepinfra.py
3216cd5 verified
raw
history blame
3.07 kB
import json
import requests
from typing import Union
def generate(message: str, model: str='meta-llama/Meta-Llama-3-70B-Instruct', system_prompt: str = "Be Helpful and Friendly. Keep your response straightfoward, short and concise", max_tokens: int = 512, temperature: float = 0.7) -> Union[str, None]:
"""
Utilizes a variety of large language models (LLMs) to engage in conversational interactions.
Parameters:
- model (str): The name or identifier of the LLM to be used for conversation. Available models include:
- "meta-llama/Meta-Llama-3-70B-Instruct"
- "meta-llama/Meta-Llama-3-8B-Instruct"
- "mistralai/Mixtral-8x22B-Instruct-v0.1"
- "mistralai/Mixtral-8x22B-v0.1"
- "microsoft/WizardLM-2-8x22B"
- "microsoft/WizardLM-2-7B"
- "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1"
- "google/gemma-1.1-7b-it"
- "databricks/dbrx-instruct"
- "mistralai/Mixtral-8x7B-Instruct-v0.1"
- "mistralai/Mistral-7B-Instruct-v0.2"
- "meta-llama/Llama-2-70b-chat-hf"
- "cognitivecomputations/dolphin-2.6-mixtral-8x7b"
- message (str): The message to be sent to the LLM to initiate or continue the conversation.
- system_prompt (str): Optional. The initial system message to start the conversation. Defaults to "Talk Like Shakespeare".
Returns:
- Union[str, None]: The response message from the LLM if successful, otherwise None.
"""
url = "https://api.deepinfra.com/v1/openai/chat/completions"
data = json.dumps(
{
'model': model,
'messages': [{"role": "system", "content": system_prompt}] + [{"role": "user", "content": message}] ,
'temperature': temperature,
'max_tokens': max_tokens,
'stop': [],
'stream': False
}, separators=(',', ':')
)
try:
result = requests.post(url=url, data=data)
return result.json()['choices'][0]['message']['content']
except Exception as e:
print("Error:", e)
return None
if __name__ == "__main__":
model_names = [
"meta-llama/Meta-Llama-3-70B-Instruct",
"meta-llama/Meta-Llama-3-8B-Instruct",
"mistralai/Mixtral-8x22B-Instruct-v0.1",
"mistralai/Mixtral-8x22B-v0.1",
"microsoft/WizardLM-2-8x22B",
"microsoft/WizardLM-2-7B",
"HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
"google/gemma-1.1-7b-it",
"databricks/dbrx-instruct",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.2",
"meta-llama/Llama-2-70b-chat-hf",
"cognitivecomputations/dolphin-2.6-mixtral-8x7b"
]
for name in model_names:
messages = "Introduce yourself and tell who made you and about your owner company" # Add more messages as needed
response = generate(name, messages, system_prompt="Respond very concisely and shortly")
print(f"• Model: {name} -", response)