import json import requests from typing import Union def generate(message: str, model: str='meta-llama/Meta-Llama-3-70B-Instruct', system_prompt: str = "Be Helpful and Friendly. Keep your response straightfoward, short and concise", max_tokens: int = 512, temperature: float = 0.7) -> Union[str, None]: """ Utilizes a variety of large language models (LLMs) to engage in conversational interactions. Parameters: - model (str): The name or identifier of the LLM to be used for conversation. Available models include: - "meta-llama/Meta-Llama-3-70B-Instruct" - "meta-llama/Meta-Llama-3-8B-Instruct" - "mistralai/Mixtral-8x22B-Instruct-v0.1" - "mistralai/Mixtral-8x22B-v0.1" - "microsoft/WizardLM-2-8x22B" - "microsoft/WizardLM-2-7B" - "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1" - "google/gemma-1.1-7b-it" - "databricks/dbrx-instruct" - "mistralai/Mixtral-8x7B-Instruct-v0.1" - "mistralai/Mistral-7B-Instruct-v0.2" - "meta-llama/Llama-2-70b-chat-hf" - "cognitivecomputations/dolphin-2.6-mixtral-8x7b" - message (str): The message to be sent to the LLM to initiate or continue the conversation. - system_prompt (str): Optional. The initial system message to start the conversation. Defaults to "Talk Like Shakespeare". Returns: - Union[str, None]: The response message from the LLM if successful, otherwise None. """ url = "https://api.deepinfra.com/v1/openai/chat/completions" data = json.dumps( { 'model': model, 'messages': [{"role": "system", "content": system_prompt}] + [{"role": "user", "content": message}] , 'temperature': temperature, 'max_tokens': max_tokens, 'stop': [], 'stream': False }, separators=(',', ':') ) try: result = requests.post(url=url, data=data) return result.json()['choices'][0]['message']['content'] except Exception as e: print("Error:", e) return None if __name__ == "__main__": model_names = [ "meta-llama/Meta-Llama-3-70B-Instruct", "meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mixtral-8x22B-Instruct-v0.1", "mistralai/Mixtral-8x22B-v0.1", "microsoft/WizardLM-2-8x22B", "microsoft/WizardLM-2-7B", "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1", "google/gemma-1.1-7b-it", "databricks/dbrx-instruct", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.2", "meta-llama/Llama-2-70b-chat-hf", "cognitivecomputations/dolphin-2.6-mixtral-8x7b" ] for name in model_names: messages = "Introduce yourself and tell who made you and about your owner company" # Add more messages as needed response = generate(name, messages, system_prompt="Respond very concisely and shortly") print(f"• Model: {name} -", response)