Spaces:
Running
Running
File size: 7,370 Bytes
6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 3b1bd72 6ded5b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
from datetime import datetime
# Initialize session state variables
if 'messages' not in st.session_state:
st.session_state.messages = []
if "user_input_widget" not in st.session_state:
st.session_state.user_input_widget = ""
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("amd/AMD-OLMo-1B-SFT")
model = AutoModelForCausalLM.from_pretrained("amd/AMD-OLMo-1B-SFT")
if torch.cuda.is_available():
model = model.to("cuda")
return model, tokenizer
def generate_response(prompt, model, tokenizer, history):
# Format conversation history with the template
bos = tokenizer.eos_token
conversation = ""
for msg in history:
if msg["role"] == "user":
conversation += f"<|user|>\n{msg['content']}\n"
else:
conversation += f"<|assistant|>\n{msg['content']}\n"
template = bos + conversation + f"<|user|>\n{prompt}\n<|assistant|>\n"
inputs = tokenizer([template], return_tensors='pt', return_token_type_ids=False)
if torch.cuda.is_available():
inputs = inputs.to("cuda")
outputs = model.generate(
**inputs,
max_new_tokens=1000,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=0.7
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the assistant's last response
response = response.split("<|assistant|>\n")[-1].strip()
return response
def main():
st.set_page_config(
page_title="AMD-OLMo Chatbot",
layout="wide",
initial_sidebar_state="expanded"
)
# Custom CSS
st.markdown("""
<style>
.stTab {
font-size: 20px;
}
.model-info {
background-color: #f0f2f6;
padding: 20px;
border-radius: 10px;
margin: 10px 0;
}
.chat-message {
padding: 15px;
border-radius: 10px;
margin: 10px 0;
}
.user-message {
background-color: #e6f3ff;
border-left: 5px solid #2e6da4;
}
.assistant-message {
background-color: #f0f2f6;
border-left: 5px solid #5cb85c;
}
.stTextArea textarea {
font-size: 16px;
}
.timestamp {
font-size: 12px;
color: #666;
margin-top: 5px;
}
.st-emotion-cache-1v0mbdj.e115fcil1 {
margin-top: 20px;
}
</style>
""", unsafe_allow_html=True)
# Create tabs
tab1, tab2 = st.tabs(["Model Information", "Chat Interface"])
with tab1:
st.title("AMD-OLMo-1B-SFT Model Information")
with st.container():
st.markdown("""
<div class="model-info">
<h2>Model Overview</h2>
AMD-OLMo-1B-SFT is a state-of-the-art language model developed by AMD. This model represents a significant advancement in AMD's AI capabilities.
<h3>Architecture Specifications</h3>
| Component | Specification |
|-----------|---------------|
| Parameters | 1.2B |
| Layers | 16 |
| Attention Heads | 16 |
| Hidden Size | 2048 |
| Context Length | 2048 |
| Vocabulary Size | 50,280 |
<h3>Training Details</h3>
- Pre-trained on 1.3 trillion tokens from Dolma v1.7
- Two-phase supervised fine-tuning (SFT):
1. Tulu V2 dataset
2. OpenHermes-2.5, WebInstructSub, and Code-Feedback datasets
<h3>Key Capabilities</h3>
- Natural language understanding and generation
- Context-aware responses
- Code understanding and generation
- Complex reasoning tasks
- Instruction following
- Multi-turn conversations
<h3>Hardware Optimization</h3>
- Optimized for AMD Instinct™ MI250 GPUs
- Distributed training across 16 nodes with 4 GPUs each
- Efficient inference on consumer hardware
</div>
""", unsafe_allow_html=True)
with tab2:
st.title("Chat with AMD-OLMo")
# Load model
try:
model, tokenizer = load_model()
st.success("Model loaded successfully! You can start chatting.")
except Exception as e:
st.error(f"Error loading model: {str(e)}")
return
# Chat interface
st.markdown("### Chat History")
chat_container = st.container()
with chat_container:
for message in st.session_state.messages:
div_class = "user-message" if message["role"] == "user" else "assistant-message"
timestamp = message.get("timestamp", datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
st.markdown(f"""
<div class="chat-message {div_class}">
<b>{message["role"].title()}:</b> {message["content"]}
<div class="timestamp">{timestamp}</div>
</div>
""", unsafe_allow_html=True)
# User input section
with st.container():
user_input = st.text_area(
"Your message:",
key="user_input_widget",
height=100,
placeholder="Type your message here..."
)
col1, col2, col3 = st.columns([1, 1, 4])
with col1:
if st.button("Send", use_container_width=True):
if user_input.strip():
# Add user message to history with timestamp
st.session_state.messages.append({
"role": "user",
"content": user_input,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
})
# Generate response
with st.spinner("Generating response..."):
response = generate_response(user_input, model, tokenizer, st.session_state.messages)
# Add assistant response to history with timestamp
st.session_state.messages.append({
"role": "assistant",
"content": response,
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
})
# Clear input
st.session_state.user_input_widget = ""
st.experimental_rerun()
with col2:
if st.button("Clear History", use_container_width=True):
st.session_state.messages = []
st.session_state.user_input_widget = ""
st.experimental_rerun()
if __name__ == "__main__":
main() |