Spaces:
Sleeping
Sleeping
Commit
·
c2d9ca2
1
Parent(s):
4cb8735
Upload 2 files
Browse files- app.py.txt +62 -0
- requirements.txt.txt +0 -0
app.py.txt
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
from random import choice
|
3 |
+
from PIL import Image
|
4 |
+
import gradio as gr
|
5 |
+
from transformers import pipeline
|
6 |
+
import matplotlib.pyplot as plt
|
7 |
+
|
8 |
+
# Initialize the models
|
9 |
+
detector50 = pipeline(model="facebook/detr-resnet-50")
|
10 |
+
detector101 = pipeline(model="facebook/detr-resnet-101")
|
11 |
+
|
12 |
+
# Define colors and font dictionary for bounding boxes and labels
|
13 |
+
COLORS = ["#ff7f7f", "#ff7fbf", "#ff7fff", "#bf7fff",
|
14 |
+
"#7f7fff", "#7fbfff", "#7fffff", "#7fffbf",
|
15 |
+
"#7fff7f", "#bfff7f", "#ffff7f", "#ffbf7f"]
|
16 |
+
|
17 |
+
fdic = {
|
18 |
+
"family": "Impact",
|
19 |
+
"style": "italic",
|
20 |
+
"size": 15,
|
21 |
+
"color": "yellow",
|
22 |
+
"weight": "bold"
|
23 |
+
}
|
24 |
+
|
25 |
+
def get_figure(in_pil_img, in_results):
|
26 |
+
# Create a figure to display the image and annotations
|
27 |
+
plt.figure(figsize=(16, 10))
|
28 |
+
plt.imshow(in_pil_img)
|
29 |
+
ax = plt.gca()
|
30 |
+
|
31 |
+
# Add bounding boxes and labels to the image
|
32 |
+
for prediction in in_results:
|
33 |
+
selected_color = choice(COLORS)
|
34 |
+
x, y = prediction['box']['xmin'], prediction['box']['ymin']
|
35 |
+
w, h = prediction['box']['xmax'] - x, prediction['box']['ymax'] - y
|
36 |
+
ax.add_patch(plt.Rectangle((x, y), w, h, fill=False, color=selected_color, linewidth=3))
|
37 |
+
ax.text(x, y, f"{prediction['label']}: {round(prediction['score']*100, 1)}%", fontdict=fdic)
|
38 |
+
|
39 |
+
plt.axis("off")
|
40 |
+
plt.tight_layout()
|
41 |
+
|
42 |
+
# Convert the figure to a PIL Image and return
|
43 |
+
buf = io.BytesIO()
|
44 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
45 |
+
buf.seek(0)
|
46 |
+
return Image.open(buf)
|
47 |
+
|
48 |
+
def infer(model, in_pil_img):
|
49 |
+
# Perform inference using the specified model and input image
|
50 |
+
results = detector101(in_pil_img) if model == "detr-resnet-101" else detector50(in_pil_img)
|
51 |
+
return get_figure(in_pil_img, results)
|
52 |
+
|
53 |
+
# Define Gradio interface
|
54 |
+
with gr.Blocks() as demo:
|
55 |
+
gr.Markdown("## DETR Object Detection")
|
56 |
+
model = gr.Radio(["detr-resnet-50", "detr-resnet-101"], value="detr-resnet-50", label="Model name")
|
57 |
+
input_image = gr.Image(label="Input image", type="pil")
|
58 |
+
output_image = gr.Image(label="Output image")
|
59 |
+
send_btn = gr.Button("Infer")
|
60 |
+
send_btn.click(fn=infer, inputs=[model, input_image], outputs=output_image)
|
61 |
+
|
62 |
+
demo.launch()
|
requirements.txt.txt
ADDED
File without changes
|