Dhanush S Gowda
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,28 +1,19 @@
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
-
|
4 |
-
|
|
|
|
|
5 |
|
6 |
# Function to load a single model
|
|
|
7 |
def load_model(model_name):
|
8 |
if model_name == 'BART':
|
9 |
-
return pipeline("summarization", model="facebook/bart-large-cnn")
|
10 |
elif model_name == 'T5':
|
11 |
-
return pipeline("summarization", model="t5-large")
|
12 |
elif model_name == 'Pegasus':
|
13 |
-
return pipeline("summarization", model="google/pegasus-cnn_dailymail")
|
14 |
-
|
15 |
-
# Function to load all models concurrently and cache them
|
16 |
-
@st.cache_resource
|
17 |
-
def load_all_models():
|
18 |
-
model_names = ['BART', 'T5', 'Pegasus']
|
19 |
-
models = {}
|
20 |
-
with ThreadPoolExecutor() as executor:
|
21 |
-
futures = {executor.submit(load_model, name): name for name in model_names}
|
22 |
-
for future in futures:
|
23 |
-
model_name = futures[future]
|
24 |
-
models[model_name] = future.result()
|
25 |
-
return models
|
26 |
|
27 |
# Streamlit app layout
|
28 |
st.title("Text Summarization with Pre-trained Models (BART, T5, Pegasus)")
|
@@ -34,23 +25,16 @@ if text_input:
|
|
34 |
word_count = len(text_input.split())
|
35 |
st.write(f"**Word Count:** {word_count}")
|
36 |
|
37 |
-
|
38 |
-
with st.spinner("Loading models and generating summaries..."):
|
39 |
-
start_time = time.time()
|
40 |
-
models = load_all_models()
|
41 |
-
summaries = {}
|
42 |
-
for model_name, model in models.items():
|
43 |
-
summary = model(text_input, max_length=150, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)[0]['summary_text']
|
44 |
-
summaries[model_name] = summary
|
45 |
-
end_time = time.time()
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
st.write(
|
|
|
55 |
else:
|
56 |
st.error("Please enter text to summarize.")
|
|
|
1 |
import streamlit as st
|
2 |
from transformers import pipeline
|
3 |
+
import os
|
4 |
+
|
5 |
+
# Set the cache directory
|
6 |
+
CACHE_DIR = os.getenv('HF_HOME', os.path.expanduser('~/.cache/huggingface/hub'))
|
7 |
|
8 |
# Function to load a single model
|
9 |
+
@st.cache_resource
|
10 |
def load_model(model_name):
|
11 |
if model_name == 'BART':
|
12 |
+
return pipeline("summarization", model="facebook/bart-large-cnn", cache_dir=CACHE_DIR)
|
13 |
elif model_name == 'T5':
|
14 |
+
return pipeline("summarization", model="t5-large", cache_dir=CACHE_DIR)
|
15 |
elif model_name == 'Pegasus':
|
16 |
+
return pipeline("summarization", model="google/pegasus-cnn_dailymail", cache_dir=CACHE_DIR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
# Streamlit app layout
|
19 |
st.title("Text Summarization with Pre-trained Models (BART, T5, Pegasus)")
|
|
|
25 |
word_count = len(text_input.split())
|
26 |
st.write(f"**Word Count:** {word_count}")
|
27 |
|
28 |
+
model_choice = st.selectbox("Choose a model:", ['BART', 'T5', 'Pegasus'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
if st.button("Generate Summary"):
|
31 |
+
with st.spinner(f"Generating summary using {model_choice}..."):
|
32 |
+
summarizer = load_model(model_choice)
|
33 |
+
summary = summarizer(text_input, max_length=150, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)[0]['summary_text']
|
34 |
+
|
35 |
+
summary_word_count = len(summary.split())
|
36 |
+
st.subheader(f"Summary using {model_choice}")
|
37 |
+
st.write(summary.replace('<n>', ''))
|
38 |
+
st.write(f"**Summary Word Count:** {summary_word_count}")
|
39 |
else:
|
40 |
st.error("Please enter text to summarize.")
|