Dhanush S Gowda
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,75 +1,143 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
from transformers import pipeline
|
3 |
import os
|
|
|
4 |
|
5 |
-
#
|
6 |
-
os.environ['TRANSFORMERS_CACHE'] = os.getenv('HF_HOME', os.path.expanduser('~/.cache/huggingface/hub'))
|
7 |
-
|
8 |
-
# Function to load all three models
|
9 |
@st.cache_resource
|
10 |
-
def
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
st.
|
18 |
-
|
19 |
-
# Load models
|
20 |
-
with st.spinner("Loading models..."):
|
21 |
-
bart_model, t5_model, pegasus_model = load_models()
|
22 |
-
|
23 |
-
# Input text
|
24 |
-
text_input = st.text_area("Enter text to summarize:")
|
25 |
-
|
26 |
-
# User input for min and max words
|
27 |
-
st.sidebar.header("Summary Length Settings")
|
28 |
-
min_words = st.sidebar.slider("Minimum words in summary:", 10, 100, 50, step=5)
|
29 |
-
max_words = st.sidebar.slider("Maximum words in summary:", min_words + 10, 300, 150, step=10)
|
30 |
-
|
31 |
-
if text_input:
|
32 |
-
word_count = len(text_input.split())
|
33 |
-
st.write(f"**Input Word Count:** {word_count}")
|
34 |
-
|
35 |
-
if st.button("Generate Summaries"):
|
36 |
-
with st.spinner("Generating summaries..."):
|
37 |
-
# Generate summaries with dynamic length constraints
|
38 |
-
bart_summary = bart_model(
|
39 |
-
text_input,
|
40 |
-
max_length=max_words,
|
41 |
-
min_length=min_words,
|
42 |
-
num_beams=4,
|
43 |
-
early_stopping=True
|
44 |
-
)[0]['summary_text']
|
45 |
-
|
46 |
-
t5_summary = t5_model(
|
47 |
-
text_input,
|
48 |
-
max_length=max_words,
|
49 |
-
min_length=min_words,
|
50 |
-
num_beams=4,
|
51 |
-
early_stopping=True
|
52 |
-
)[0]['summary_text']
|
53 |
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
st.write(f"**Word Count:** {len(pegasus_summary.split())}")
|
74 |
-
else:
|
75 |
-
st.warning("Please enter text to summarize.")
|
|
|
1 |
import streamlit as st
|
2 |
+
import multiprocessing
|
3 |
from transformers import pipeline
|
4 |
import os
|
5 |
+
import torch
|
6 |
|
7 |
+
# Optimize model loading and caching
|
|
|
|
|
|
|
8 |
@st.cache_resource
|
9 |
+
def load_model(model_name):
|
10 |
+
"""Efficiently load a summarization model."""
|
11 |
+
try:
|
12 |
+
# Use GPU if available
|
13 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
14 |
+
return pipeline("summarization", model=model_name, device=device)
|
15 |
+
except Exception as e:
|
16 |
+
st.error(f"Error loading model {model_name}: {e}")
|
17 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
+
def generate_summary(model, text, length_percentage=0.3):
|
20 |
+
"""
|
21 |
+
Generate summary with intelligent length control.
|
22 |
+
|
23 |
+
Args:
|
24 |
+
model: Hugging Face summarization pipeline
|
25 |
+
text: Input text to summarize
|
26 |
+
length_percentage: Percentage of original text to use for summary
|
27 |
+
|
28 |
+
Returns:
|
29 |
+
Generated summary
|
30 |
+
"""
|
31 |
+
# Intelligent length calculation
|
32 |
+
word_count = len(text.split())
|
33 |
+
max_length = max(50, int(word_count * length_percentage))
|
34 |
+
min_length = max(30, int(word_count * 0.1))
|
35 |
+
|
36 |
+
try:
|
37 |
+
summary = model(
|
38 |
+
text,
|
39 |
+
max_length=max_length,
|
40 |
+
min_length=min_length,
|
41 |
+
num_beams=4,
|
42 |
+
early_stopping=True
|
43 |
+
)[0]['summary_text']
|
44 |
+
return summary
|
45 |
+
except Exception as e:
|
46 |
+
st.error(f"Summarization error: {e}")
|
47 |
+
return "Could not generate summary."
|
48 |
|
49 |
+
def parallel_summarize(text, length_percentage=0.3):
|
50 |
+
"""
|
51 |
+
Generate summaries in parallel using multiprocessing.
|
52 |
+
|
53 |
+
Args:
|
54 |
+
text: Input text to summarize
|
55 |
+
length_percentage: Percentage of original text to use for summary
|
56 |
+
|
57 |
+
Returns:
|
58 |
+
Dictionary of summaries from different models
|
59 |
+
"""
|
60 |
+
model_configs = [
|
61 |
+
("facebook/bart-large-cnn", "BART"),
|
62 |
+
("t5-large", "T5"),
|
63 |
+
("google/pegasus-cnn_dailymail", "Pegasus")
|
64 |
+
]
|
65 |
+
|
66 |
+
with multiprocessing.Pool(processes=min(len(model_configs), os.cpu_count())) as pool:
|
67 |
+
args = [(load_model(model_name), text, length_percentage)
|
68 |
+
for model_name, _ in model_configs]
|
69 |
+
|
70 |
+
results = pool.starmap(generate_summary, args)
|
71 |
+
|
72 |
+
return {name: summary for (_, name), summary in zip(model_configs, results)}
|
73 |
|
74 |
+
def main():
|
75 |
+
st.set_page_config(
|
76 |
+
page_title="Multi-Model Text Summarization",
|
77 |
+
page_icon="📝",
|
78 |
+
layout="wide"
|
79 |
+
)
|
80 |
+
|
81 |
+
# Title and Description
|
82 |
+
st.title("🤖 Advanced Text Summarization")
|
83 |
+
st.markdown("""
|
84 |
+
Generate concise summaries using multiple state-of-the-art models.
|
85 |
+
Intelligently adapts summary length based on input text.
|
86 |
+
""")
|
87 |
+
|
88 |
+
# Text Input
|
89 |
+
text_input = st.text_area(
|
90 |
+
"Paste your text here:",
|
91 |
+
height=250,
|
92 |
+
help="Enter the text you want to summarize"
|
93 |
+
)
|
94 |
+
|
95 |
+
# Length Control
|
96 |
+
length_control = st.slider(
|
97 |
+
"Summary Compression Rate",
|
98 |
+
min_value=0.1,
|
99 |
+
max_value=0.5,
|
100 |
+
value=0.3,
|
101 |
+
step=0.05,
|
102 |
+
help="Adjust how much of the original text to keep in the summary"
|
103 |
+
)
|
104 |
+
|
105 |
+
if st.button("Generate Summaries", type="primary"):
|
106 |
+
if not text_input:
|
107 |
+
st.warning("Please enter some text to summarize.")
|
108 |
+
return
|
109 |
+
|
110 |
+
progress_text = st.empty()
|
111 |
+
progress_bar = st.progress(0)
|
112 |
+
|
113 |
+
stages = ["Initializing Models", "Running BART", "Running T5", "Running Pegasus", "Completed"]
|
114 |
+
|
115 |
+
try:
|
116 |
+
for i, stage in enumerate(stages[:-1], 1):
|
117 |
+
progress_text.info(stage)
|
118 |
+
progress_bar.progress(i * 20)
|
119 |
+
|
120 |
+
if i == 2:
|
121 |
+
summaries = parallel_summarize(text_input, length_control)
|
122 |
+
|
123 |
+
progress_text.success("Summarization Complete!")
|
124 |
+
progress_bar.progress(100)
|
125 |
+
|
126 |
+
st.subheader("📝 Generated Summaries")
|
127 |
+
cols = st.columns(3)
|
128 |
+
|
129 |
+
for (col, (model, summary)) in zip(cols, summaries.items()):
|
130 |
+
with col:
|
131 |
+
st.markdown(f"### {model} Summary")
|
132 |
+
st.write(summary)
|
133 |
+
st.caption(f"Word Count: {len(summary.split())}")
|
134 |
+
|
135 |
+
except Exception as e:
|
136 |
+
st.error(f"An error occurred: {e}")
|
137 |
+
|
138 |
+
finally:
|
139 |
+
progress_text.empty()
|
140 |
+
progress_bar.empty()
|
141 |
|
142 |
+
if __name__ == "__main__":
|
143 |
+
main()
|
|
|
|
|
|