Dhanush S Gowda commited on
Commit
caf0283
·
verified ·
1 Parent(s): 8059077

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +40 -0
app.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+
4
+ # Load models and tokenizers using Hugging Face's pipeline
5
+ # @st.cache_data()
6
+ def load_pipelines():
7
+ bart_pipeline = pipeline("summarization", model="facebook/bart-large-cnn")
8
+ t5_pipeline = pipeline("summarization", model="t5-large")
9
+ pegasus_pipeline = pipeline("summarization", model="google/pegasus-cnn_dailymail")
10
+
11
+ return {
12
+ 'BART': bart_pipeline,
13
+ 'T5': t5_pipeline,
14
+ 'Pegasus': pegasus_pipeline,
15
+ }
16
+
17
+ prompt = """
18
+ Summarize the below paragraph
19
+ """
20
+
21
+ # Streamlit app layout
22
+ st.title("Text Summarization with Pre-trained Models (BART, T5, Pegasus)")
23
+
24
+ text_input = st.text_area("Enter text to summarize:")
25
+
26
+ if st.button("Generate Summary"):
27
+ if text_input:
28
+ pipelines = load_pipelines()
29
+ summaries = {}
30
+ for model_name, pipeline in pipelines.items():
31
+ summary = pipeline(f"{prompt}\n{text_input}", max_length=150, min_length=50, length_penalty=2.0, num_beams=4, early_stopping=True)[0]['summary_text']
32
+ summaries[model_name] = summary
33
+
34
+ st.subheader("Summaries")
35
+ for model_name, summary in summaries.items():
36
+ st.write(f"**{model_name}**")
37
+ st.write(summary.replace('<n>', ''))
38
+ st.write("---")
39
+ else:
40
+ st.error("Please enter text to summarize.")