File size: 9,602 Bytes
2d07fab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import os
import json
import random
import torch
import ijson
import numpy as np
from PIL import Image
from torchvision.transforms import ToTensor
from torchvision.ops import box_convert, clip_boxes_to_image
from re_classifier import REClassifier
from utils import progressbar
def collate_fn(batch):
image = torch.stack([s['image'] for s in batch], dim=0)
image_size = torch.FloatTensor([s['image_size'] for s in batch])
# bbox = torch.stack([s['bbox'] for s in batch], dim=0)
bbox = torch.cat([s['bbox'] for s in batch], dim=0)
# bbox_raw = torch.stack([s['bbox_raw'] for s in batch], dim=0)
bbox_raw = torch.cat([s['bbox_raw'] for s in batch], dim=0)
expr = [s['expr'] for s in batch]
tok = None
if batch[0]['tok'] is not None:
tok = {
'input_ids': torch.cat([s['tok']['input_ids'] for s in batch], dim=0),
'attention_mask': torch.cat([s['tok']['attention_mask'] for s in batch], dim=0)
}
# dynamic batching
max_length = max([s['tok']['length'] for s in batch])
tok = {
'input_ids': tok['input_ids'][:, :max_length],
'attention_mask': tok['attention_mask'][:, :max_length],
}
mask = None
if batch[0]['mask'] is not None:
mask = torch.stack([s['mask'] for s in batch], dim=0)
mask_bbox = None
if batch[0]['mask_bbox'] is not None:
mask_bbox = torch.stack([s['mask_bbox'] for s in batch], dim=0)
tr_param = [s['tr_param'] for s in batch]
return {
'image': image,
'image_size': image_size,
'bbox': bbox,
'bbox_raw': bbox_raw,
'expr': expr,
'tok': tok,
'tr_param': tr_param,
'mask': mask,
'mask_bbox': mask_bbox,
}
class RECDataset(torch.utils.data.Dataset):
def __init__(self, transform=None, tokenizer=None, max_length=32, with_mask_bbox=False):
super().__init__()
self.samples = [] # list of samples: [(file_name, expresion, bbox)]
self.transform = transform
self.tokenizer = tokenizer
self.max_length = int(max_length)
self.with_mask_bbox = bool(with_mask_bbox)
def tokenize(self, inp, max_length):
return self.tokenizer(
inp,
return_tensors='pt',
padding='max_length',
return_token_type_ids=False,
return_attention_mask=True,
add_special_tokens=True,
truncation=True,
max_length=max_length
)
def print_stats(self):
print(f'{len(self.samples)} samples')
lens = [len(expr.split()) for _, expr, _ in self.samples]
print('expression lengths stats: '
f'min={np.min(lens):.1f}, '
f'mean={np.mean(lens):.1f}, '
f'median={np.median(lens):.1f}, '
f'max={np.max(lens):.1f}, '
f'99.9P={np.percentile(lens, 99.9):.1f}'
)
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
file_name, expr, bbox = self.samples[idx]
if not os.path.exists(file_name):
raise IOError(f'{file_name} not found')
img = Image.open(file_name).convert('RGB')
# if isinstance(expr, (list, tuple)):
# expr = random.choice(expr)
# image size as read from disk (PIL)
W0, H0 = img.size
# # ensure box coordinates fall inside the image
# bbox = clip_boxes_to_image(bbox, (H0, W0))
# assert torch.all(bbox[:, (0, 1)] <= bbox[:, (2, 3)]) # xyxy format
sample = {
'image': img,
'image_size': (H0, W0), # image original size
'bbox': bbox.clone(), # box transformations are inplace ops
'bbox_raw': bbox.clone(), # raw boxes w/o any transformation (in pixels)
'expr': expr,
'tok': None,
'mask': torch.ones((1, H0, W0), dtype=torch.float32), # visibiity mask
'mask_bbox': None, # target bbox mask
}
# apply transforms
if self.transform is None:
sample['image'] = ToTensor()(sample['image'])
else:
sample = self.transform(sample)
# tokenize after the transformations (just in case there where a left<>right substitution)
if self.tokenizer is not None:
sample['tok'] = self.tokenize(sample['expr'], self.max_length)
sample['tok']['length'] = sample['tok']['attention_mask'].sum(1).item()
# bbox segmentation mask
if self.with_mask_bbox:
# image size after transforms
_, H, W = sample['image'].size()
# transformed bbox in pixels
bbox = sample['bbox'].clone()
bbox[:, (0, 2)] *= W
bbox[:, (1, 3)] *= H
bbox = clip_boxes_to_image((bbox + 0.5).long(), (H, W))
# output mask
sample['mask_bbox'] = torch.zeros((1, H, W), dtype=torch.float32)
for x1, y1, x2, y2 in bbox.tolist():
sample['mask_bbox'][:, y1:y2+1, x1:x2+1] = 1.0
return sample
class RegionDescriptionsVisualGnome(RECDataset):
def __init__(self, data_root, transform=None, tokenizer=None,
max_length=32, with_mask_bbox=False):
super().__init__(transform=transform, tokenizer=tokenizer,
max_length=max_length, with_mask_bbox=with_mask_bbox)
# if available, read COCO IDs from the val, testA and testB splits from
# the RefCOCO dataset
try:
with open('./refcoco_valtest_ids.txt', 'r') as fh:
refcoco_ids = [int(lin.strip()) for lin in fh.readlines()]
except:
refcoco_ids = []
def path_from_url(fname):
return os.path.join(data_root, fname[fname.index('VG_100K'):])
with open(os.path.join(data_root, 'image_data.json'), 'r') as f:
image_data = {
data['image_id']: path_from_url(data['url'])
for data in json.load(f)
if data['coco_id'] is None or data['coco_id'] not in refcoco_ids
}
print(f'{len(image_data)} images')
self.samples = []
with open(os.path.join(data_root, 'region_descriptions.json'), 'r') as f:
for record in progressbar(ijson.items(f, 'item.regions.item'), desc='loading data'):
if record['image_id'] not in image_data:
continue
file_name = image_data[record['image_id']]
expr = record['phrase']
bbox = [record['x'], record['y'], record['width'], record['height']]
bbox = torch.atleast_2d(torch.FloatTensor(bbox))
bbox = box_convert(bbox, 'xywh', 'xyxy') # xyxy
self.samples.append((file_name, expr, bbox))
self.print_stats()
class ReferDataset(RECDataset):
def __init__(self, data_root, dataset, split_by, split, transform=None,
tokenizer=None, max_length=32, with_mask_bbox=False):
super().__init__(transform=transform, tokenizer=tokenizer,
max_length=max_length, with_mask_bbox=with_mask_bbox)
# https://github.com/lichengunc/refer
try:
import sys
sys.path.append('refer')
from refer import REFER
except:
raise RuntimeError('create a symlink to valid refer compilation '
'(see https://github.com/lichengunc/refer)')
refer = REFER(data_root, dataset, split_by)
ref_ids = sorted(refer.getRefIds(split=split))
self.samples = []
for rid in progressbar(ref_ids, desc='loading data'):
ref = refer.Refs[rid]
ann = refer.refToAnn[rid]
file_name = refer.Imgs[ref['image_id']]['file_name']
if dataset == 'refclef':
file_name = os.path.join(
'refer', 'data', 'images', 'saiapr_tc-12', file_name
)
else:
coco_set = file_name.split('_')[1]
file_name = os.path.join(
'refer', 'data', 'images', 'mscoco', coco_set, file_name
)
bbox = ann['bbox']
bbox = torch.atleast_2d(torch.FloatTensor(bbox))
bbox = box_convert(bbox, 'xywh', 'xyxy') # xyxy
sentences = [s['sent'] for s in ref['sentences']]
if 'train' in split: # remove repeated expresions
sentences = list(set(sentences))
sentences = sorted(sentences)
self.samples += [(file_name, expr, bbox) for expr in sentences]
self.print_stats()
class RefCLEF(ReferDataset):
def __init__(self, *args, **kwargs):
assert args[0] in ('train', 'val', 'test')
super().__init__('refer/data', 'refclef', 'berkeley', *args, **kwargs)
class RefCOCO(ReferDataset):
def __init__(self, *args, **kwargs):
assert args[0] in ('train', 'val', 'trainval', 'testA', 'testB')
super().__init__('refer/data', 'refcoco', 'unc', *args, **kwargs)
class RefCOCOp(ReferDataset):
def __init__(self, *args, **kwargs):
assert args[0] in ('train', 'val', 'trainval', 'testA', 'testB')
super().__init__('refer/data', 'refcoco+', 'unc', *args, **kwargs)
class RefCOCOg(ReferDataset):
def __init__(self, *args, **kwargs):
assert args[0] in ('train', 'val', 'test')
super().__init__('refer/data', 'refcocog', 'umd', *args, **kwargs)
|