RECModel / datasets.py
mmazuecos's picture
Base app.
2d07fab
raw
history blame
9.6 kB
import os
import json
import random
import torch
import ijson
import numpy as np
from PIL import Image
from torchvision.transforms import ToTensor
from torchvision.ops import box_convert, clip_boxes_to_image
from re_classifier import REClassifier
from utils import progressbar
def collate_fn(batch):
image = torch.stack([s['image'] for s in batch], dim=0)
image_size = torch.FloatTensor([s['image_size'] for s in batch])
# bbox = torch.stack([s['bbox'] for s in batch], dim=0)
bbox = torch.cat([s['bbox'] for s in batch], dim=0)
# bbox_raw = torch.stack([s['bbox_raw'] for s in batch], dim=0)
bbox_raw = torch.cat([s['bbox_raw'] for s in batch], dim=0)
expr = [s['expr'] for s in batch]
tok = None
if batch[0]['tok'] is not None:
tok = {
'input_ids': torch.cat([s['tok']['input_ids'] for s in batch], dim=0),
'attention_mask': torch.cat([s['tok']['attention_mask'] for s in batch], dim=0)
}
# dynamic batching
max_length = max([s['tok']['length'] for s in batch])
tok = {
'input_ids': tok['input_ids'][:, :max_length],
'attention_mask': tok['attention_mask'][:, :max_length],
}
mask = None
if batch[0]['mask'] is not None:
mask = torch.stack([s['mask'] for s in batch], dim=0)
mask_bbox = None
if batch[0]['mask_bbox'] is not None:
mask_bbox = torch.stack([s['mask_bbox'] for s in batch], dim=0)
tr_param = [s['tr_param'] for s in batch]
return {
'image': image,
'image_size': image_size,
'bbox': bbox,
'bbox_raw': bbox_raw,
'expr': expr,
'tok': tok,
'tr_param': tr_param,
'mask': mask,
'mask_bbox': mask_bbox,
}
class RECDataset(torch.utils.data.Dataset):
def __init__(self, transform=None, tokenizer=None, max_length=32, with_mask_bbox=False):
super().__init__()
self.samples = [] # list of samples: [(file_name, expresion, bbox)]
self.transform = transform
self.tokenizer = tokenizer
self.max_length = int(max_length)
self.with_mask_bbox = bool(with_mask_bbox)
def tokenize(self, inp, max_length):
return self.tokenizer(
inp,
return_tensors='pt',
padding='max_length',
return_token_type_ids=False,
return_attention_mask=True,
add_special_tokens=True,
truncation=True,
max_length=max_length
)
def print_stats(self):
print(f'{len(self.samples)} samples')
lens = [len(expr.split()) for _, expr, _ in self.samples]
print('expression lengths stats: '
f'min={np.min(lens):.1f}, '
f'mean={np.mean(lens):.1f}, '
f'median={np.median(lens):.1f}, '
f'max={np.max(lens):.1f}, '
f'99.9P={np.percentile(lens, 99.9):.1f}'
)
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
file_name, expr, bbox = self.samples[idx]
if not os.path.exists(file_name):
raise IOError(f'{file_name} not found')
img = Image.open(file_name).convert('RGB')
# if isinstance(expr, (list, tuple)):
# expr = random.choice(expr)
# image size as read from disk (PIL)
W0, H0 = img.size
# # ensure box coordinates fall inside the image
# bbox = clip_boxes_to_image(bbox, (H0, W0))
# assert torch.all(bbox[:, (0, 1)] <= bbox[:, (2, 3)]) # xyxy format
sample = {
'image': img,
'image_size': (H0, W0), # image original size
'bbox': bbox.clone(), # box transformations are inplace ops
'bbox_raw': bbox.clone(), # raw boxes w/o any transformation (in pixels)
'expr': expr,
'tok': None,
'mask': torch.ones((1, H0, W0), dtype=torch.float32), # visibiity mask
'mask_bbox': None, # target bbox mask
}
# apply transforms
if self.transform is None:
sample['image'] = ToTensor()(sample['image'])
else:
sample = self.transform(sample)
# tokenize after the transformations (just in case there where a left<>right substitution)
if self.tokenizer is not None:
sample['tok'] = self.tokenize(sample['expr'], self.max_length)
sample['tok']['length'] = sample['tok']['attention_mask'].sum(1).item()
# bbox segmentation mask
if self.with_mask_bbox:
# image size after transforms
_, H, W = sample['image'].size()
# transformed bbox in pixels
bbox = sample['bbox'].clone()
bbox[:, (0, 2)] *= W
bbox[:, (1, 3)] *= H
bbox = clip_boxes_to_image((bbox + 0.5).long(), (H, W))
# output mask
sample['mask_bbox'] = torch.zeros((1, H, W), dtype=torch.float32)
for x1, y1, x2, y2 in bbox.tolist():
sample['mask_bbox'][:, y1:y2+1, x1:x2+1] = 1.0
return sample
class RegionDescriptionsVisualGnome(RECDataset):
def __init__(self, data_root, transform=None, tokenizer=None,
max_length=32, with_mask_bbox=False):
super().__init__(transform=transform, tokenizer=tokenizer,
max_length=max_length, with_mask_bbox=with_mask_bbox)
# if available, read COCO IDs from the val, testA and testB splits from
# the RefCOCO dataset
try:
with open('./refcoco_valtest_ids.txt', 'r') as fh:
refcoco_ids = [int(lin.strip()) for lin in fh.readlines()]
except:
refcoco_ids = []
def path_from_url(fname):
return os.path.join(data_root, fname[fname.index('VG_100K'):])
with open(os.path.join(data_root, 'image_data.json'), 'r') as f:
image_data = {
data['image_id']: path_from_url(data['url'])
for data in json.load(f)
if data['coco_id'] is None or data['coco_id'] not in refcoco_ids
}
print(f'{len(image_data)} images')
self.samples = []
with open(os.path.join(data_root, 'region_descriptions.json'), 'r') as f:
for record in progressbar(ijson.items(f, 'item.regions.item'), desc='loading data'):
if record['image_id'] not in image_data:
continue
file_name = image_data[record['image_id']]
expr = record['phrase']
bbox = [record['x'], record['y'], record['width'], record['height']]
bbox = torch.atleast_2d(torch.FloatTensor(bbox))
bbox = box_convert(bbox, 'xywh', 'xyxy') # xyxy
self.samples.append((file_name, expr, bbox))
self.print_stats()
class ReferDataset(RECDataset):
def __init__(self, data_root, dataset, split_by, split, transform=None,
tokenizer=None, max_length=32, with_mask_bbox=False):
super().__init__(transform=transform, tokenizer=tokenizer,
max_length=max_length, with_mask_bbox=with_mask_bbox)
# https://github.com/lichengunc/refer
try:
import sys
sys.path.append('refer')
from refer import REFER
except:
raise RuntimeError('create a symlink to valid refer compilation '
'(see https://github.com/lichengunc/refer)')
refer = REFER(data_root, dataset, split_by)
ref_ids = sorted(refer.getRefIds(split=split))
self.samples = []
for rid in progressbar(ref_ids, desc='loading data'):
ref = refer.Refs[rid]
ann = refer.refToAnn[rid]
file_name = refer.Imgs[ref['image_id']]['file_name']
if dataset == 'refclef':
file_name = os.path.join(
'refer', 'data', 'images', 'saiapr_tc-12', file_name
)
else:
coco_set = file_name.split('_')[1]
file_name = os.path.join(
'refer', 'data', 'images', 'mscoco', coco_set, file_name
)
bbox = ann['bbox']
bbox = torch.atleast_2d(torch.FloatTensor(bbox))
bbox = box_convert(bbox, 'xywh', 'xyxy') # xyxy
sentences = [s['sent'] for s in ref['sentences']]
if 'train' in split: # remove repeated expresions
sentences = list(set(sentences))
sentences = sorted(sentences)
self.samples += [(file_name, expr, bbox) for expr in sentences]
self.print_stats()
class RefCLEF(ReferDataset):
def __init__(self, *args, **kwargs):
assert args[0] in ('train', 'val', 'test')
super().__init__('refer/data', 'refclef', 'berkeley', *args, **kwargs)
class RefCOCO(ReferDataset):
def __init__(self, *args, **kwargs):
assert args[0] in ('train', 'val', 'trainval', 'testA', 'testB')
super().__init__('refer/data', 'refcoco', 'unc', *args, **kwargs)
class RefCOCOp(ReferDataset):
def __init__(self, *args, **kwargs):
assert args[0] in ('train', 'val', 'trainval', 'testA', 'testB')
super().__init__('refer/data', 'refcoco+', 'unc', *args, **kwargs)
class RefCOCOg(ReferDataset):
def __init__(self, *args, **kwargs):
assert args[0] in ('train', 'val', 'test')
super().__init__('refer/data', 'refcocog', 'umd', *args, **kwargs)