DiamondYin commited on
Commit
550e253
·
1 Parent(s): bd57dbf

Update app_utils.py

Browse files
Files changed (1) hide show
  1. app_utils.py +4 -3
app_utils.py CHANGED
@@ -13,6 +13,7 @@ from langchain.chains import RetrievalQA # RetrievalQA is a class in the langch
13
  from langchain.vectorstores import Chroma # Chroma is a class in the langchain.vectorstores module that can be used to store vectors.
14
  from langchain.document_loaders import DirectoryLoader #
15
  from langchain.embeddings.openai import OpenAIEmbeddings # OpenAIGPTEmbeddings
 
16
  from langchain.text_splitter import CharacterTextSplitter # CharacterTextSplitter is a class in the langchain.text_splitter module that can be used to split text into chunks.
17
  #import streamlit as st
18
  from langchain.indexes import VectorstoreIndexCreator #导入向量存储索引创建器
@@ -75,9 +76,9 @@ def initialize_knowledge_base():
75
  # embeddings.append(embedding)
76
 
77
  #vStore = np.concatenate(embeddings, axis=0)
78
-
79
- openAI_embeddings = OpenAIEmbeddings()
80
- vStore = Chroma.from_documents(doc_texts, openAI_embeddings) #Chroma是一个类,用于存储向量,from_documents是一个方法,用于从文档中创建向量存储器,openAI_embeddings是一个类,用于将文本转换为向量
81
 
82
  conv_model = RetrievalQA.from_chain_type(
83
  llm=OpenAI(model_name="gpt-3.5-turbo-16k"),
 
13
  from langchain.vectorstores import Chroma # Chroma is a class in the langchain.vectorstores module that can be used to store vectors.
14
  from langchain.document_loaders import DirectoryLoader #
15
  from langchain.embeddings.openai import OpenAIEmbeddings # OpenAIGPTEmbeddings
16
+ from langchain.embeddings import HuggingFaceInstructEmbeddings
17
  from langchain.text_splitter import CharacterTextSplitter # CharacterTextSplitter is a class in the langchain.text_splitter module that can be used to split text into chunks.
18
  #import streamlit as st
19
  from langchain.indexes import VectorstoreIndexCreator #导入向量存储索引创建器
 
76
  # embeddings.append(embedding)
77
 
78
  #vStore = np.concatenate(embeddings, axis=0)
79
+ embedding = HuggingFaceInstructEmbeddings()
80
+ #openAI_embeddings = OpenAIEmbeddings()
81
+ vStore = Chroma.from_documents(doc_texts, embedding) #Chroma是一个类,用于存储向量,from_documents是一个方法,用于从文档中创建向量存储器,openAI_embeddings是一个类,用于将文本转换为向量
82
 
83
  conv_model = RetrievalQA.from_chain_type(
84
  llm=OpenAI(model_name="gpt-3.5-turbo-16k"),