DiamondYin commited on
Commit
db6b197
·
1 Parent(s): 9b281dd

Update app_utils.py

Browse files
Files changed (1) hide show
  1. app_utils.py +18 -1
app_utils.py CHANGED
@@ -14,6 +14,21 @@ from langchain.vectorstores import Chroma # Chroma is a class in the langchain.v
14
  from langchain.document_loaders import DirectoryLoader #
15
  from langchain.embeddings.openai import OpenAIEmbeddings # OpenAIGPTEmbeddings
16
  from langchain.text_splitter import CharacterTextSplitter # CharacterTextSplitter is a class in the langchain.text_splitter module that can be used to split text into chunks.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
 
19
  OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
@@ -47,7 +62,9 @@ def initialize_knowledge_base():
47
  openAI_embeddings = OpenAIEmbeddings()
48
  for doc in doc_texts:
49
  text = str(doc)
50
- embedding = openAI_embeddings.embed_documents(text)
 
 
51
  embeddings.append(embedding)
52
 
53
  vStore = np.concatenate(embeddings, axis=0)
 
14
  from langchain.document_loaders import DirectoryLoader #
15
  from langchain.embeddings.openai import OpenAIEmbeddings # OpenAIGPTEmbeddings
16
  from langchain.text_splitter import CharacterTextSplitter # CharacterTextSplitter is a class in the langchain.text_splitter module that can be used to split text into chunks.
17
+ from tenacity import (
18
+ retry,
19
+ stop_after_attempt,
20
+ wait_random_exponential,
21
+ )
22
+
23
+ # FUNCTIONS
24
+
25
+ # get embeddings
26
+ @retry(wait=wait_random_exponential(min=1, max=60), stop=stop_after_attempt(6))
27
+ @st.cache_data
28
+ def embedding_from_string(input: str, model: str) -> list:
29
+ response = openai.Embedding.create(input=input, model=model)
30
+ embedding = response["data"][0]["embedding"]
31
+ return embedding
32
 
33
 
34
  OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
 
62
  openAI_embeddings = OpenAIEmbeddings()
63
  for doc in doc_texts:
64
  text = str(doc)
65
+ #embedding = openAI_embeddings.embed_documents(text)
66
+ #embeddings.append(embedding)
67
+ embedding = embedding_from_string(text, "text-embedding-ada-002")
68
  embeddings.append(embedding)
69
 
70
  vStore = np.concatenate(embeddings, axis=0)