Spaces:
Running
Running
File size: 11,665 Bytes
e547b24 d46ae16 e547b24 3e5de19 e547b24 95e45b2 e547b24 95e45b2 91a31ca e547b24 919ba89 e547b24 d06cfed 4d6cbec e547b24 9be63af e547b24 4d6cbec e547b24 6f5a32e e547b24 4d6cbec e547b24 6f5a32e 6865c48 e547b24 4d6cbec e547b24 4d6cbec e547b24 4d6cbec e547b24 6f5a32e e547b24 4d6cbec e547b24 6f5a32e 015c7ba e547b24 6f5a32e e547b24 91a31ca ec3ff56 e547b24 a2abc5c 4d6cbec ec3ff56 4d6cbec bc84ac0 ff548ac 91a31ca ff548ac 02f8cfa ff548ac 2e6bef5 4c9bc80 2e6bef5 47a4ae3 2e6bef5 47a4ae3 2e6bef5 dc38a98 ff548ac b3acf55 4d6cbec ff548ac 02f8cfa ef3d6ce 2392de1 ff548ac e547b24 b3acf55 a2abc5c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr
import requests
import io
import random
import os
import time
import json
import base64
from io import BytesIO
from datetime import datetime
from PIL import Image
from mistralai import Mistral
from deep_translator import GoogleTranslator
import json
from theme import theme
from fastapi import FastAPI
app = FastAPI()
# Based on a project by Nymbo
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
api_key = os.getenv("MISTRAL_API_KEY")
Mistralclient = Mistral(api_key=api_key)
# Function to query the API and return the generated image
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
if prompt == "" or prompt is None:
return None
key = random.randint(0, 999)
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
headers = {"Authorization": f"Bearer {API_TOKEN}"}
# Translate the prompt from Russian to English if necessary
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
# Add some extra flair to the prompt
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
# If seed is -1, generate a random seed and use it
if seed == -1:
seed = random.randint(1, 1000000000)
# Prepare the payload for the API call, including width and height
payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1000000000),
"strength": strength,
"parameters": {
"width": width, # Pass the width to the API
"height": height # Pass the height to the API
}
}
# Send the request to the API and handle the response
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Error: Failed to get image. Response status: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 503:
raise gr.Error(f"{response.status_code} : The model is being loaded")
raise gr.Error(f"{response.status_code}")
try:
# Convert the response content into an image
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
return image
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None
def encode_image(image_path):
"""Encode the image to base64."""
try:
# Open the image file
image = Image.open(image_path).convert("RGB")
# Resize the image to a height of 512 while maintaining the aspect ratio
base_height = 512
h_percent = (base_height / float(image.size[1]))
w_size = int((float(image.size[0]) * float(h_percent)))
image = image.resize((w_size, base_height), Image.LANCZOS)
# Convert the image to a byte stream
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
except FileNotFoundError:
print(f"Error: The file {image_path} was not found.")
return None
except Exception as e: # Add generic exception handling
print(f"Error: {e}")
return None
def feifeichat(image):
try:
model = "pixtral-large-2411"
# Define the messages for the chat
base64_image = encode_image(image)
messages = [{
"role":
"user",
"content": [
{
"type": "text",
"text": "Please provide a detailed description of this photo"
},
{
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{base64_image}"
},
],
"stream": False,
}]
partial_message = ""
for chunk in Mistralclient.chat.stream(model=model, messages=messages):
if chunk.data.choices[0].delta.content is not None:
partial_message = partial_message + chunk.data.choices[
0].delta.content
yield partial_message
except Exception as e: # Adding generic exception handling
print(f"Error: {e}")
return "Please upload a photo"
# CSS to style the app
css = """
.gradio-container {background-color: MediumAquaMarine}
#app-container {
max-width: 930px;
margin-left: auto;
margin-right: auto;
}
footer {
visibility: hidden;
}
"""
examples = [
"a beautiful woman with blonde hair and blue eyes",
"a beautiful woman with brown hair and grey eyes",
"a beautiful woman with black hair and brown eyes",
]
# Build the Gradio UI with Blocks
with gr.Blocks(theme=theme, css=css) as app:
# Add a title to the app
gr.HTML("<center><h1>FLUX.1-Dev</h1></center>")
with gr.Tabs() as tabs:
with gr.TabItem(label="🖼 Image To Prompt 📄", visible=True):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture 🖼️",height=320,type="filepath")
submit_btn = gr.Button(value="Submit", variant='primary')
with gr.Column():
output_text = gr.Textbox(label="Flux Prompt ✍️", show_copy_button = True)
clr_button =gr.Button("Clear 🗑️ ",variant="primary", elem_id="clear_button")
clr_button.click(lambda: (None, None), None, [input_img, output_text], queue=False, show_api=False)
submit_btn.click(feifeichat, [input_img], [output_text])
with gr.TabItem("✍️ Text to Image 🖼", visible=True):
# Container for all the UI elements
with gr.Column(elem_id="app-container"):
# Add a text input for the main prompt
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Group():
with gr.Row():
text_prompt = gr.Textbox(label="Image Prompt ✍️", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input")
# Accordion for advanced settings
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value=" (((hands:-1.25))), physical-defects:2, unhealthy-deformed-joints:2, unhealthy-hands:2, out of frame, (((bad face))), (bad-image-v2-39000:1.3), (((out of frame))), deformed body features, (((poor facial details))), (poorly drawn face:1.3), jpeg artifacts, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), [asymmetrical features], warped expressions, distorted eyes ", lines=3, elem_id="negative-prompt-text-input")
with gr.Row():
width = gr.Slider(label="Width", value=896, minimum=64, maximum=1216, step=32)
height = gr.Slider(label="Height", value=1152, minimum=64, maximum=1216, step=32)
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
strength = gr.Slider(label="Strength", value=90, minimum=0, maximum=100, step=10)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # Setting the seed to -1 will make it random
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 a Karras", "DPM2 Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"])
# Add a button to trigger the image generation
with gr.Row():
text_button = gr.Button("Generate Image", variant='primary', elem_id="gen-button")
# Image output area to display the generated image
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", show_share_button=False, format="png", elem_id="gallery")
with gr.Row():
clear_prompt =gr.Button("Clear 🗑️",variant="primary", elem_id="clear_button")
clear_prompt.click(lambda: (None, None), None, [text_prompt, image_output], queue=False, show_api=False)
with gr.Row():
gr.Examples(
examples = examples,
inputs = [text_prompt],
)
# Bind the button to the query function with the added width and height inputs
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)
with gr.Tab("ℹ️ Tips"):
with gr.Row():
with gr.Column():
gr.Markdown(
"""
<div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
<h2 style="float: left; font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
<ol style="padding-left: 1.5rem;">
<li>Add an image to generate a prompt, this is optional.</li>
<li>If using an image to prompt, copy the prompt and paste into the prompt on tab 2</li>
<li>Enter a detailed description of the image you want to create.</li>
<li>Adjust advanced settings if desired (tap to expand).</li>
<li>Tap "Generate Image" and wait for your creation!</li>
</ol>
<p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
<p style="margin-top: 1rem; font-style: italic;">*Note: Some LoRA models will not work every time (not sure why), refresh the page and try again</p>
<p style="margin-top: 1rem; font-style: italic;">*I'm still playing around to try to sort the issue, feel free to let me know if you find a fix</p>
</div>
"""
)
app.queue(default_concurrency_limit=200, max_size=200) # <-- Sets up a queue with default parameters
if __name__ == "__main__":
# Launch the Gradio app
app.launch(show_api=False, share=True)
|