File size: 11,088 Bytes
fcb9503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
db575fd
fcb9503
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
import gradio as gr
import requests
import io
import random
import os
import time
import json
import base64
from io import BytesIO
from datetime import datetime
from PIL import Image
from mistralai import Mistral
from deep_translator import GoogleTranslator
import json
from theme import theme
from fastapi import FastAPI

app = FastAPI()

API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100

api_key = os.getenv("MISTRAL_API_KEY")
Mistralclient = Mistral(api_key=api_key)

# Function to query the API and return the generated image
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
    if prompt == "" or prompt is None:
        return None

    key = random.randint(0, 999)
    
    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    # Translate the prompt from Russian to English if necessary
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    # Add some extra flair to the prompt
    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')

    # If seed is -1, generate a random seed and use it
    if seed == -1:
        seed = random.randint(1, 1000000000)
    
    # Prepare the payload for the API call, including width and height
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength,
        "parameters": {
            "width": width,  # Pass the width to the API
            "height": height  # Pass the height to the API
        }
    }

    # Send the request to the API and handle the response
    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        # Convert the response content into an image
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None

def encode_image(image_path):
    """Encode the image to base64."""
    try:
        # Open the image file
        image = Image.open(image_path).convert("RGB")

        # Resize the image to a height of 512 while maintaining the aspect ratio
        base_height = 512
        h_percent = (base_height / float(image.size[1]))
        w_size = int((float(image.size[0]) * float(h_percent)))
        image = image.resize((w_size, base_height), Image.LANCZOS)

        # Convert the image to a byte stream
        buffered = BytesIO()
        image.save(buffered, format="JPEG")
        img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")

        return img_str
    except FileNotFoundError:
        print(f"Error: The file {image_path} was not found.")
        return None
    except Exception as e:  # Add generic exception handling
        print(f"Error: {e}")
        return None

def feifeichat(image):
    try:
        model = "pixtral-12b-2409"
        # Define the messages for the chat
        base64_image = encode_image(image)
        messages = [{
            "role":
            "user",
            "content": [
                {
                    "type": "text",
                    "text": "Please provide a detailed description of this photo"
                },
                {
                    "type": "image_url",
                    "image_url": f"data:image/jpeg;base64,{base64_image}" 
                },
            ],
            "stream": False,
        }]
    
        partial_message = ""
        for chunk in Mistralclient.chat.stream(model=model, messages=messages):
            if chunk.data.choices[0].delta.content is not None:
                partial_message = partial_message + chunk.data.choices[
                    0].delta.content
                yield partial_message
    except Exception as e:  # 添加通用异常处理
        print(f"Error: {e}")
        return "Please upload a photo"        


examples = [
    "a beautiful woman with blonde hair and blue eyes",
    "a beautiful woman with brown hair and grey eyes",
    "a beautiful woman with black hair and brown eyes",
]

# CSS to style the app
css = """
.gradio-container {background-color: MediumAquaMarine}
#app-container {
    max-width: 930px;
    margin-left: auto;
    margin-right: auto;
}
footer {
    visibility: hidden;
}
"""

# Gradio Interface

with gr.Blocks(css=css, theme=theme) as app:
    gr.HTML("<h1><center>Flux Dev Lab</center></h1>")
    with gr.Tab(label="Image To Flux Prompt"):
        with gr.Row():
            with gr.Column(scale=4):
                input_img = gr.Image(label="Input Picture", type="filepath")
                
            with gr.Column(scale=3):
                output_text = gr.Textbox(label="Flux Prompt", lines=2, scale=6, show_copy_button = True)
                submit_btn = gr.Button(value="Generate Pompt", scale=4, variant='primary')
                clear_prompt =gr.Button("Clear 🗑️",variant="primary", elem_id="clear_button")
                clear_prompt.click(lambda: (None, None), None, [input_img, output_text], queue=False, show_api=False)
    
    submit_btn.click(feifeichat, [input_img], [output_text])

    with gr.Tab(label="Generate Image"):
        with gr.Row():
            with gr.Column(scale=4):
                with gr.Row():
                    img_output = gr.Image(type="pil", label="Image Output", show_share_button=False, format="png", elem_id="gallery")
                with gr.Row():
                    text_prompt = gr.Textbox(label="Image Prompt ✍️", placeholder="Enter prompt...", lines=2, scale=6, show_copy_button = True, elem_id="prompt-text-input")
                    text_button = gr.Button("Generate Image",scale=1, variant='primary', elem_id="gen-button")
                    clear_prompt =gr.Button("Clear 🗑️",variant="primary", elem_id="clear_button")
                    clear_prompt.click(lambda: (None, None), None, [text_prompt, img_output], queue=False, show_api=False)
            with gr.Accordion("Advanced Options", open=True):
                with gr.Column(scale=1):
                    negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="( (((hands:-1.25))), physical-defects:2, unhealthy-deformed-joints:2, unhealthy-hands:2, out of frame, (((bad face))), (bad-image-v2-39000:1.3), (((out of frame))), deformed body features,  (((poor facial details))), (poorly drawn face:1.3), jpeg artifacts, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), [asymmetrical features], warped expressions, distorted eyes ", lines=6, elem_id="negative-prompt-text-input")
                        
                    width = gr.Slider(
                        label="Width",
                        minimum=512,
                        maximum=1280,
                        step=8,
                        value=896,
                    )
                    height = gr.Slider(
                        label="Height",
                        minimum=512,
                        maximum=1280,
                        step=8,
                        value=1152,
                    )
                    method = gr.Dropdown(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 a Karras", "DPM2 Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"])
                    steps = gr.Slider(
                        label="Sampling steps",
                        minimum=1,
                        maximum=100,
                        step=1,
                        value=24,
                    )
                    cfg = gr.Slider(
                        label="CFG Scale",
                        minimum=3.5,
                        maximum=7,
                        step=0.1,
                        value=3.5,
                    )
                    strength = gr.Slider(label="Strength", value=90, minimum=0, maximum=100, step=10)
                    seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
                    
        gr.Examples(
            examples = examples,    
            inputs = [text_prompt], 
        )

    # Bind the button to the query function with the added width and height inputs
    text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=img_output)

    with gr.Tab("ℹ️ Tips"):
        with gr.Row():
            with gr.Column():
                gr.Markdown(
            """
            <div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
                <h2 style="float: left; font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
                <ol style="padding-left: 1.5rem;">
                    <li>Add an image to generate a prompt, this is optional.</li>
                    <li>If using an image to prompt, copy the prompt and paste into the prompt on tab 2</li>
                    <li>Enter a detailed description of the image you want to create.</li>
                    <li>Adjust advanced settings if desired (tap to expand).</li>
                    <li>Tap "Generate Image" and wait for your creation!</li>
                </ol>
                <p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
                <p style="margin-top: 1rem; font-style: italic;">*Note: Some LoRA models will not work every time (not sure why), refresh the page and try again</p>
                <p style="margin-top: 1rem; font-style: italic;">*I'm still playing around to try to sort the issue, feel free to let me know if you find a fix</p>
            </div>
            """
            )   


app.queue(default_concurrency_limit=200, max_size=200)  # <-- Sets up a queue with default parameters
if __name__ == "__main__":
    app.launch(show_api=False, share=False)