import gradio as gr import requests import io import random import os import time import json import base64 from io import BytesIO from datetime import datetime from PIL import Image from mistralai import Mistral from deep_translator import GoogleTranslator import json from theme import theme from fastapi import FastAPI app = FastAPI() API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev" API_TOKEN = os.getenv("HF_READ_TOKEN") headers = {"Authorization": f"Bearer {API_TOKEN}"} timeout = 100 api_key = os.getenv("MISTRAL_API_KEY") Mistralclient = Mistral(api_key=api_key) # Function to query the API and return the generated image def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024): if prompt == "" or prompt is None: return None key = random.randint(0, 999) API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")]) headers = {"Authorization": f"Bearer {API_TOKEN}"} # Translate the prompt from Russian to English if necessary prompt = GoogleTranslator(source='ru', target='en').translate(prompt) print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') # Add some extra flair to the prompt prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." print(f'\033[1mGeneration {key}:\033[0m {prompt}') # If seed is -1, generate a random seed and use it if seed == -1: seed = random.randint(1, 1000000000) # Prepare the payload for the API call, including width and height payload = { "inputs": prompt, "is_negative": is_negative, "steps": steps, "cfg_scale": cfg_scale, "seed": seed if seed != -1 else random.randint(1, 1000000000), "strength": strength, "parameters": { "width": width, # Pass the width to the API "height": height # Pass the height to the API } } # Send the request to the API and handle the response response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) if response.status_code != 200: print(f"Error: Failed to get image. Response status: {response.status_code}") print(f"Response content: {response.text}") if response.status_code == 503: raise gr.Error(f"{response.status_code} : The model is being loaded") raise gr.Error(f"{response.status_code}") try: # Convert the response content into an image image_bytes = response.content image = Image.open(io.BytesIO(image_bytes)) print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') return image except Exception as e: print(f"Error when trying to open the image: {e}") return None def encode_image(image_path): """Encode the image to base64.""" try: # Open the image file image = Image.open(image_path).convert("RGB") # Resize the image to a height of 512 while maintaining the aspect ratio base_height = 512 h_percent = (base_height / float(image.size[1])) w_size = int((float(image.size[0]) * float(h_percent))) image = image.resize((w_size, base_height), Image.LANCZOS) # Convert the image to a byte stream buffered = BytesIO() image.save(buffered, format="JPEG") img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") return img_str except FileNotFoundError: print(f"Error: The file {image_path} was not found.") return None except Exception as e: # Add generic exception handling print(f"Error: {e}") return None def feifeichat(image): try: model = "pixtral-12b-2409" # Define the messages for the chat base64_image = encode_image(image) messages = [{ "role": "user", "content": [ { "type": "text", "text": "Please provide a detailed description of this photo" }, { "type": "image_url", "image_url": f"data:image/jpeg;base64,{base64_image}" }, ], "stream": False, }] partial_message = "" for chunk in Mistralclient.chat.stream(model=model, messages=messages): if chunk.data.choices[0].delta.content is not None: partial_message = partial_message + chunk.data.choices[ 0].delta.content yield partial_message except Exception as e: # 添加通用异常处理 print(f"Error: {e}") return "Please upload a photo" examples = [ "a beautiful woman with blonde hair and blue eyes", "a beautiful woman with brown hair and grey eyes", "a beautiful woman with black hair and brown eyes", ] # CSS to style the app css = """ .gradio-container {background-color: MediumAquaMarine} #app-container { max-width: 930px; margin-left: auto; margin-right: auto; } footer { visibility: hidden; } """ # Gradio Interface with gr.Blocks(css=css, theme=theme) as app: gr.HTML("

Flux Dev Lab

") with gr.Tab(label="Image To Flux Prompt"): with gr.Row(): with gr.Column(scale=4): input_img = gr.Image(label="Input Picture", type="filepath") with gr.Column(scale=3): output_text = gr.Textbox(label="Flux Prompt", lines=2, scale=6, show_copy_button = True) submit_btn = gr.Button(value="Generate Pompt", scale=4, variant='primary') clear_prompt =gr.Button("Clear 🗑️",variant="primary", elem_id="clear_button") clear_prompt.click(lambda: (None, None), None, [input_img, output_text], queue=False, show_api=False) submit_btn.click(feifeichat, [input_img], [output_text]) with gr.Tab(label="Generate Image"): with gr.Row(): with gr.Column(scale=4): with gr.Row(): img_output = gr.Image(type="pil", label="Image Output", show_share_button=False, format="png", elem_id="gallery") with gr.Row(): text_prompt = gr.Textbox(label="Image Prompt ✍️", placeholder="Enter prompt...", lines=2, scale=6, show_copy_button = True, elem_id="prompt-text-input") text_button = gr.Button("Generate Image",scale=1, variant='primary', elem_id="gen-button") clear_prompt =gr.Button("Clear 🗑️",variant="primary", elem_id="clear_button") clear_prompt.click(lambda: (None, None), None, [text_prompt, img_output], queue=False, show_api=False) with gr.Accordion("Advanced Options", open=True): with gr.Column(scale=1): negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="( (((hands:-1.25))), physical-defects:2, unhealthy-deformed-joints:2, unhealthy-hands:2, out of frame, (((bad face))), (bad-image-v2-39000:1.3), (((out of frame))), deformed body features, (((poor facial details))), (poorly drawn face:1.3), jpeg artifacts, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), [asymmetrical features], warped expressions, distorted eyes ", lines=6, elem_id="negative-prompt-text-input") width = gr.Slider( label="Width", minimum=512, maximum=1280, step=8, value=896, ) height = gr.Slider( label="Height", minimum=512, maximum=1280, step=8, value=1152, ) method = gr.Dropdown(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 a Karras", "DPM2 Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"]) steps = gr.Slider( label="Sampling steps", minimum=1, maximum=100, step=1, value=24, ) cfg = gr.Slider( label="CFG Scale", minimum=3.5, maximum=7, step=0.1, value=3.5, ) strength = gr.Slider(label="Strength", value=90, minimum=0, maximum=100, step=10) seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) gr.Examples( examples = examples, inputs = [text_prompt], ) # Bind the button to the query function with the added width and height inputs text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=img_output) with gr.Tab("ℹ️ Tips"): with gr.Row(): with gr.Column(): gr.Markdown( """

How to Use

  1. Add an image to generate a prompt, this is optional.
  2. If using an image to prompt, copy the prompt and paste into the prompt on tab 2
  3. Enter a detailed description of the image you want to create.
  4. Adjust advanced settings if desired (tap to expand).
  5. Tap "Generate Image" and wait for your creation!

Tip: Be specific in your description for best results!

*Note: Some LoRA models will not work every time (not sure why), refresh the page and try again

*I'm still playing around to try to sort the issue, feel free to let me know if you find a fix

""" ) app.queue(default_concurrency_limit=200, max_size=200) # <-- Sets up a queue with default parameters if __name__ == "__main__": app.launch(show_api=False, share=False)