Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import io
|
3 |
+
import random
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
import numpy as np
|
7 |
+
import subprocess
|
8 |
+
import torch
|
9 |
+
import json
|
10 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
11 |
+
from PIL import Image
|
12 |
+
from deep_translator import GoogleTranslator
|
13 |
+
from datetime import datetime
|
14 |
+
from model import models
|
15 |
+
from theme import theme
|
16 |
+
from fastapi import FastAPI
|
17 |
+
|
18 |
+
app = FastAPI()
|
19 |
+
|
20 |
+
|
21 |
+
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
22 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
23 |
+
timeout = 100
|
24 |
+
max_images = 6
|
25 |
+
|
26 |
+
def flip_image(x):
|
27 |
+
return np.fliplr(x)
|
28 |
+
|
29 |
+
def clear():
|
30 |
+
return None
|
31 |
+
|
32 |
+
def query(lora_id, prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="DPM++ 2M Karras", seed=-1, strength=100, width=896, height=1152):
|
33 |
+
if prompt == "" or prompt == None:
|
34 |
+
return None
|
35 |
+
|
36 |
+
if lora_id.strip() == "" or lora_id == None:
|
37 |
+
lora_id = "black-forest-labs/FLUX.1-dev"
|
38 |
+
|
39 |
+
key = random.randint(0, 999)
|
40 |
+
|
41 |
+
API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
|
42 |
+
|
43 |
+
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
|
44 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
45 |
+
|
46 |
+
# prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
|
47 |
+
# print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
48 |
+
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
|
49 |
+
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
50 |
+
|
51 |
+
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
52 |
+
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
|
53 |
+
|
54 |
+
# If seed is -1, generate a random seed and use it
|
55 |
+
if seed == -1:
|
56 |
+
seed = random.randint(1, 1000000000)
|
57 |
+
|
58 |
+
# Prepare the payload for the API call, including width and height
|
59 |
+
payload = {
|
60 |
+
"inputs": prompt,
|
61 |
+
"is_negative": is_negative,
|
62 |
+
"steps": steps,
|
63 |
+
"cfg_scale": cfg_scale,
|
64 |
+
"seed": seed if seed != -1 else random.randint(1, 1000000000),
|
65 |
+
"strength": strength,
|
66 |
+
"parameters": {
|
67 |
+
"width": width, # Pass the width to the API
|
68 |
+
"height": height # Pass the height to the API
|
69 |
+
}
|
70 |
+
}
|
71 |
+
|
72 |
+
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
73 |
+
if response.status_code != 200:
|
74 |
+
print(f"Error: Failed to get image. Response status: {response.status_code}")
|
75 |
+
print(f"Response content: {response.text}")
|
76 |
+
if response.status_code == 503:
|
77 |
+
raise gr.Error(f"{response.status_code} : The model is being loaded")
|
78 |
+
raise gr.Error(f"{response.status_code}")
|
79 |
+
|
80 |
+
try:
|
81 |
+
image_bytes = response.content
|
82 |
+
image = Image.open(io.BytesIO(image_bytes))
|
83 |
+
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
84 |
+
return image, seed
|
85 |
+
except Exception as e:
|
86 |
+
print(f"Error when trying to open the image: {e}")
|
87 |
+
return None
|
88 |
+
|
89 |
+
with gr.Group():
|
90 |
+
examples = [
|
91 |
+
"a beautiful woman with blonde hair and blue eyes",
|
92 |
+
"a beautiful woman with brown hair and grey eyes",
|
93 |
+
"a beautiful woman with black hair and brown eyes",
|
94 |
+
]
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
css = """
|
99 |
+
.title { font-size: 3em; align-items: center; text-align: center; }
|
100 |
+
.info { align-items: center; text-align: center; }
|
101 |
+
.model_info { text-align: center; }
|
102 |
+
.output { width=112px; height=112px; max_width=112px; max_height=112px; !important; }
|
103 |
+
.gallery { min_width=512px; min_height=512px; max_height=1024px; !important; }
|
104 |
+
"""
|
105 |
+
|
106 |
+
with gr.Blocks(theme=theme, fill_width=True, css=css) as app:
|
107 |
+
with gr.Tab("Image Generator"):
|
108 |
+
with gr.Row():
|
109 |
+
with gr.Column(scale=10, elem_id="prompt-container"):
|
110 |
+
with gr.Group():
|
111 |
+
with gr.Row(equal_height=True):
|
112 |
+
text_prompt = gr.Textbox(label="Image Prompt ✍️", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input")
|
113 |
+
with gr.Row():
|
114 |
+
with gr.Accordion("🎨 Lora trigger words", open=False):
|
115 |
+
gr.Markdown("""
|
116 |
+
- **Canopus-Pencil-Art-LoRA**: Pencil Art
|
117 |
+
- **Flux-Realism-FineDetailed**: Fine Detailed
|
118 |
+
- **Fashion-Hut-Modeling-LoRA**: Modeling
|
119 |
+
- **SD3.5-Large-Turbo-HyperRealistic-LoRA**: hyper realistic
|
120 |
+
- **Flux-Fine-Detail-LoRA**: Super Detail
|
121 |
+
- **SD3.5-Turbo-Realism-2.0-LoRA**: Turbo Realism
|
122 |
+
- **Canopus-LoRA-Flux-UltraRealism-2.0**: Ultra realistic
|
123 |
+
- **Canopus-Pencil-Art-LoRA**: Pencil Art
|
124 |
+
- **SD3.5-Large-Photorealistic-LoRA**: photorealistic
|
125 |
+
- **Flux.1-Dev-LoRA-HDR-Realism**: HDR
|
126 |
+
- **prithivMLmods/Ton618-Epic-Realism-Flux-LoRA**: Epic Realism
|
127 |
+
- **john-singer-sargent-style**: John Singer Sargent Style
|
128 |
+
- **alphonse-mucha-style**: Alphonse Mucha Style
|
129 |
+
- **ultra-realistic-illustration**: ultra realistic illustration
|
130 |
+
- **eye-catching**: eye-catching
|
131 |
+
- **john-constable-style**: John Constable Style
|
132 |
+
- **film-noir**: in the style of FLMNR
|
133 |
+
- **flux-lora-pro-headshot**: PROHEADSHOT
|
134 |
+
""")
|
135 |
+
with gr.Row():
|
136 |
+
custom_lora = gr.Dropdown(label="Select Model", choices=list(loaded_models.keys()), value=list(loaded_models.keys())[0], allow_custom_value=True)
|
137 |
+
with gr.Accordion("Advanced options", open=False):
|
138 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", lines=5, placeholder="What should not be in the image", value="(((hands:-1.25))), physical-defects:2, unhealthy-deformed-joints:2, unhealthy-hands:2, out of frame, (((bad face))), (bad-image-v2-39000:1.3), (((out of frame))), deformed body features, (((poor facial details))), (poorly drawn face:1.3), jpeg artifacts, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), [asymmetrical features], warped expressions, distorted eyes")
|
139 |
+
with gr.Row(equal_height=True):
|
140 |
+
width = gr.Slider(label="Image Width", value=896, minimum=64, maximum=1216, step=32)
|
141 |
+
height = gr.Slider(label="Image Height", value=1152, minimum=64, maximum=1216, step=32)
|
142 |
+
strength = gr.Slider(label="Prompt Strength", value=100, minimum=0, maximum=100, step=1)
|
143 |
+
steps = gr.Slider(label="Sampling steps", value=50, minimum=1, maximum=100, step=1)
|
144 |
+
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
|
145 |
+
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
146 |
+
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 Karras", "DPM2 a Karras", "DPM++ SDE Karras", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "DEIS", "DDIM", "Euler CFG PP", "Euler", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "LMS", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"])
|
147 |
+
with gr.Row(equal_height=True):
|
148 |
+
with gr.Accordion("🫘Seed", open=False):
|
149 |
+
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
|
150 |
+
with gr.Row(equal_height=True):
|
151 |
+
image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=2)
|
152 |
+
# Add a button to trigger the image generation
|
153 |
+
with gr.Row(equal_height=True):
|
154 |
+
text_button = gr.Button("Generate Image 🎨", variant='primary', elem_id="gen-button")
|
155 |
+
clear_prompt =gr.Button("Clear Prompt 🗑️",variant="primary", elem_id="clear_button")
|
156 |
+
clear_prompt.click(lambda: (None), None, [text_prompt], queue=False, show_api=False)
|
157 |
+
|
158 |
+
with gr.Column(scale=10):
|
159 |
+
with gr.Group():
|
160 |
+
with gr.Row():
|
161 |
+
image_output = gr.Image(type="pil", label="Image Output", format="png", show_share_button=False, elem_id="gallery")
|
162 |
+
|
163 |
+
with gr.Group():
|
164 |
+
with gr.Row():
|
165 |
+
gr.Examples(
|
166 |
+
examples = examples,
|
167 |
+
inputs = [text_prompt],
|
168 |
+
)
|
169 |
+
|
170 |
+
with gr.Group():
|
171 |
+
with gr.Row():
|
172 |
+
clear_results = gr.Button(value="Clear Image 🗑️", variant="primary", elem_id="clear_button")
|
173 |
+
clear_results.click(lambda: (None), None, [image_output], queue=False, show_api=False)
|
174 |
+
|
175 |
+
text_button.click(query, inputs=[custom_lora, text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=[image_output, seed_output])
|
176 |
+
|
177 |
+
app.queue(default_concurrency_limit=200, max_size=200) # <-- Sets up a queue with default parameters
|
178 |
+
if __name__ == "__main__":
|
179 |
+
timeout = 100
|
180 |
+
app.launch(show_api=False, share=False)
|
181 |
+
|
182 |
+
|
183 |
+
|
184 |
+
|