Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,60 +1,53 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
import io
|
3 |
import random
|
4 |
import os
|
5 |
import time
|
6 |
-
import numpy as np
|
7 |
-
import subprocess
|
8 |
-
import torch
|
9 |
import json
|
10 |
-
|
|
|
|
|
11 |
from PIL import Image
|
|
|
12 |
from deep_translator import GoogleTranslator
|
13 |
-
|
14 |
-
from model import models
|
15 |
from theme import theme
|
16 |
from fastapi import FastAPI
|
17 |
|
18 |
app = FastAPI()
|
19 |
|
20 |
|
|
|
21 |
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
22 |
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
23 |
timeout = 100
|
24 |
-
max_images = 6
|
25 |
-
|
26 |
-
def flip_image(x):
|
27 |
-
return np.fliplr(x)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
|
|
|
34 |
return None
|
35 |
|
36 |
-
if lora_id.strip() == "" or lora_id == None:
|
37 |
-
lora_id = "black-forest-labs/FLUX.1-dev"
|
38 |
-
|
39 |
key = random.randint(0, 999)
|
40 |
-
|
41 |
-
API_URL = "https://api-inference.huggingface.co/models/"+ lora_id.strip()
|
42 |
-
|
43 |
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
|
44 |
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
45 |
|
46 |
-
# prompt
|
47 |
-
# print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
48 |
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
|
49 |
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
50 |
|
|
|
51 |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
52 |
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
|
53 |
|
54 |
# If seed is -1, generate a random seed and use it
|
55 |
if seed == -1:
|
56 |
seed = random.randint(1, 1000000000)
|
57 |
-
|
58 |
# Prepare the payload for the API call, including width and height
|
59 |
payload = {
|
60 |
"inputs": prompt,
|
@@ -69,6 +62,7 @@ def query(lora_id, prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="
|
|
69 |
}
|
70 |
}
|
71 |
|
|
|
72 |
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
73 |
if response.status_code != 200:
|
74 |
print(f"Error: Failed to get image. Response status: {response.status_code}")
|
@@ -76,114 +70,187 @@ def query(lora_id, prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="
|
|
76 |
if response.status_code == 503:
|
77 |
raise gr.Error(f"{response.status_code} : The model is being loaded")
|
78 |
raise gr.Error(f"{response.status_code}")
|
79 |
-
|
80 |
try:
|
|
|
81 |
image_bytes = response.content
|
82 |
image = Image.open(io.BytesIO(image_bytes))
|
83 |
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
84 |
-
return image
|
85 |
except Exception as e:
|
86 |
print(f"Error when trying to open the image: {e}")
|
87 |
return None
|
88 |
-
|
89 |
-
with gr.Group():
|
90 |
-
examples = [
|
91 |
-
"a beautiful woman with blonde hair and blue eyes",
|
92 |
-
"a beautiful woman with brown hair and grey eyes",
|
93 |
-
"a beautiful woman with black hair and brown eyes",
|
94 |
-
]
|
95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
|
|
|
|
|
|
|
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
css = """
|
99 |
-
|
100 |
#app-container {
|
101 |
max-width: 930px;
|
102 |
margin-left: auto;
|
103 |
margin-right: auto;
|
|
|
|
|
|
|
|
|
104 |
"""
|
105 |
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
108 |
with gr.Row():
|
109 |
-
with gr.Column(scale=
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
- **Flux-Realism-FineDetailed**: Fine Detailed
|
118 |
-
- **Fashion-Hut-Modeling-LoRA**: Modeling
|
119 |
-
- **SD3.5-Large-Turbo-HyperRealistic-LoRA**: hyper realistic
|
120 |
-
- **Flux-Fine-Detail-LoRA**: Super Detail
|
121 |
-
- **SD3.5-Turbo-Realism-2.0-LoRA**: Turbo Realism
|
122 |
-
- **Canopus-LoRA-Flux-UltraRealism-2.0**: Ultra realistic
|
123 |
-
- **Canopus-Pencil-Art-LoRA**: Pencil Art
|
124 |
-
- **SD3.5-Large-Photorealistic-LoRA**: photorealistic
|
125 |
-
- **Flux.1-Dev-LoRA-HDR-Realism**: HDR
|
126 |
-
- **prithivMLmods/Ton618-Epic-Realism-Flux-LoRA**: Epic Realism
|
127 |
-
- **john-singer-sargent-style**: John Singer Sargent Style
|
128 |
-
- **alphonse-mucha-style**: Alphonse Mucha Style
|
129 |
-
- **ultra-realistic-illustration**: ultra realistic illustration
|
130 |
-
- **eye-catching**: eye-catching
|
131 |
-
- **john-constable-style**: John Constable Style
|
132 |
-
- **film-noir**: in the style of FLMNR
|
133 |
-
- **flux-lora-pro-headshot**: PROHEADSHOT
|
134 |
-
""")
|
135 |
-
|
136 |
-
with gr.Row():
|
137 |
-
custom_lora = gr.Dropdown([" ", "prithivMLmods/Canopus-Pencil-Art-LoRA", "prithivMLmods/Flux-Realism-FineDetailed", "prithivMLmods/Fashion-Hut-Modeling-LoRA", "prithivMLmods/SD3.5-Large-Turbo-HyperRealistic-LoRA", "prithivMLmods/Flux-Fine-Detail-LoRA", "prithivMLmods/SD3.5-Turbo-Realism-2.0-LoRA", "hugovntr/flux-schnell-realism", "fofr/sdxl-deep-down", "prithivMLmods/Canopus-LoRA-Flux-UltraRealism-2.0", "prithivMLmods/Canopus-Realism-LoRA", "prithivMLmods/Canopus-LoRA-Flux-FaceRealism", "prithivMLmods/SD3.5-Large-Photorealistic-LoRA", "prithivMLmods/Flux.1-Dev-LoRA-HDR-Realism", "prithivMLmods/Ton618-Epic-Realism-Flux-LoRA", "KappaNeuro/john-singer-sargent-style", "KappaNeuro/alphonse-mucha-style", "ntc-ai/SDXL-LoRA-slider.ultra-realistic-illustration", "ntc-ai/SDXL-LoRA-slider.eye-catching", "KappaNeuro/john-constable-style", "dvyio/flux-lora-film-noir", "dvyio/flux-lora-pro-headshot"], label="Custom LoRA",)
|
138 |
-
with gr.Row():
|
139 |
-
with gr.Accordion("⚙️ Advanced Settings", open=False, elem_id="settings-container"):
|
140 |
-
negative_prompt = gr.Textbox(label="Negative Prompt", lines=5, placeholder="What should not be in the image", value="(((hands:-1.25))), physical-defects:2, unhealthy-deformed-joints:2, unhealthy-hands:2, out of frame, (((bad face))), (bad-image-v2-39000:1.3), (((out of frame))), deformed body features, (((poor facial details))), (poorly drawn face:1.3), jpeg artifacts, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), [asymmetrical features], warped expressions, distorted eyes")
|
141 |
-
with gr.Row():
|
142 |
-
width = gr.Slider(label="Image Width", value=896, minimum=64, maximum=1216, step=32)
|
143 |
-
height = gr.Slider(label="Image Height", value=1152, minimum=64, maximum=1216, step=32)
|
144 |
-
strength = gr.Slider(label="Prompt Strength", value=100, minimum=0, maximum=100, step=1)
|
145 |
-
steps = gr.Slider(label="Sampling steps", value=50, minimum=1, maximum=100, step=1)
|
146 |
-
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5)
|
147 |
-
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
148 |
-
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 Karras", "DPM2 a Karras", "DPM++ SDE Karras", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "DEIS", "DDIM", "Euler CFG PP", "Euler", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "LMS", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"])
|
149 |
-
with gr.Row():
|
150 |
-
with gr.Accordion("🫘Seed", open=False):
|
151 |
-
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
|
152 |
-
with gr.Row(equal_height=True):
|
153 |
-
with gr.Accordion("🫘Seed", open=False):
|
154 |
-
seed_output = gr.Textbox(label="Seed Used", elem_id="seed-output")
|
155 |
-
with gr.Row(equal_height=True):
|
156 |
-
image_num = gr.Slider(label="Number of images", minimum=1, maximum=max_images, value=1, step=1, interactive=True, scale=2)
|
157 |
-
# Add a button to trigger the image generation
|
158 |
-
with gr.Row(equal_height=True):
|
159 |
-
text_button = gr.Button("Generate Image 🎨", variant='primary', elem_id="gen-button")
|
160 |
-
clear_prompt =gr.Button("Clear Prompt 🗑️",variant="primary", elem_id="clear_button")
|
161 |
-
clear_prompt.click(lambda: (None), None, [text_prompt], queue=False, show_api=False)
|
162 |
-
|
163 |
-
with gr.Column(scale=10):
|
164 |
-
with gr.Group():
|
165 |
-
with gr.Row():
|
166 |
-
image_output = gr.Image(type="pil", label="Image Output", format="png", show_share_button=False, elem_id="gallery")
|
167 |
-
|
168 |
-
with gr.Group():
|
169 |
-
with gr.Row():
|
170 |
-
gr.Examples(
|
171 |
-
examples = examples,
|
172 |
-
inputs = [text_prompt],
|
173 |
-
)
|
174 |
|
175 |
-
|
176 |
-
with gr.Row():
|
177 |
-
clear_results = gr.Button(value="Clear Image 🗑️", variant="primary", elem_id="clear_button")
|
178 |
-
clear_results.click(lambda: (None), None, [image_output], queue=False, show_api=False)
|
179 |
-
|
180 |
-
text_button.click(query, inputs=[custom_lora, text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=[image_output, seed_output])
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
187 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
|
|
|
|
|
|
|
189 |
|
|
|
1 |
import gradio as gr
|
2 |
+
import requests
|
3 |
import io
|
4 |
import random
|
5 |
import os
|
6 |
import time
|
|
|
|
|
|
|
7 |
import json
|
8 |
+
import base64
|
9 |
+
from io import BytesIO
|
10 |
+
from datetime import datetime
|
11 |
from PIL import Image
|
12 |
+
from mistralai import Mistral
|
13 |
from deep_translator import GoogleTranslator
|
14 |
+
import json
|
|
|
15 |
from theme import theme
|
16 |
from fastapi import FastAPI
|
17 |
|
18 |
app = FastAPI()
|
19 |
|
20 |
|
21 |
+
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
22 |
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
23 |
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
24 |
timeout = 100
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
api_key = os.getenv("MISTRAL_API_KEY")
|
27 |
+
Mistralclient = Mistral(api_key=api_key)
|
28 |
|
29 |
+
# Function to query the API and return the generated image
|
30 |
+
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024):
|
31 |
+
if prompt == "" or prompt is None:
|
32 |
return None
|
33 |
|
|
|
|
|
|
|
34 |
key = random.randint(0, 999)
|
35 |
+
|
|
|
|
|
36 |
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
|
37 |
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
38 |
|
39 |
+
# Translate the prompt from Russian to English if necessary
|
|
|
40 |
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
|
41 |
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
|
42 |
|
43 |
+
# Add some extra flair to the prompt
|
44 |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
45 |
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
|
46 |
|
47 |
# If seed is -1, generate a random seed and use it
|
48 |
if seed == -1:
|
49 |
seed = random.randint(1, 1000000000)
|
50 |
+
|
51 |
# Prepare the payload for the API call, including width and height
|
52 |
payload = {
|
53 |
"inputs": prompt,
|
|
|
62 |
}
|
63 |
}
|
64 |
|
65 |
+
# Send the request to the API and handle the response
|
66 |
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
|
67 |
if response.status_code != 200:
|
68 |
print(f"Error: Failed to get image. Response status: {response.status_code}")
|
|
|
70 |
if response.status_code == 503:
|
71 |
raise gr.Error(f"{response.status_code} : The model is being loaded")
|
72 |
raise gr.Error(f"{response.status_code}")
|
73 |
+
|
74 |
try:
|
75 |
+
# Convert the response content into an image
|
76 |
image_bytes = response.content
|
77 |
image = Image.open(io.BytesIO(image_bytes))
|
78 |
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
|
79 |
+
return image
|
80 |
except Exception as e:
|
81 |
print(f"Error when trying to open the image: {e}")
|
82 |
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
+
def encode_image(image_path):
|
85 |
+
"""Encode the image to base64."""
|
86 |
+
try:
|
87 |
+
# Open the image file
|
88 |
+
image = Image.open(image_path).convert("RGB")
|
89 |
+
|
90 |
+
# Resize the image to a height of 512 while maintaining the aspect ratio
|
91 |
+
base_height = 512
|
92 |
+
h_percent = (base_height / float(image.size[1]))
|
93 |
+
w_size = int((float(image.size[0]) * float(h_percent)))
|
94 |
+
image = image.resize((w_size, base_height), Image.LANCZOS)
|
95 |
|
96 |
+
# Convert the image to a byte stream
|
97 |
+
buffered = BytesIO()
|
98 |
+
image.save(buffered, format="JPEG")
|
99 |
+
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
100 |
|
101 |
+
return img_str
|
102 |
+
except FileNotFoundError:
|
103 |
+
print(f"Error: The file {image_path} was not found.")
|
104 |
+
return None
|
105 |
+
except Exception as e: # Add generic exception handling
|
106 |
+
print(f"Error: {e}")
|
107 |
+
return None
|
108 |
+
|
109 |
+
def feifeichat(image):
|
110 |
+
try:
|
111 |
+
model = "pixtral-12b-2409"
|
112 |
+
# Define the messages for the chat
|
113 |
+
base64_image = encode_image(image)
|
114 |
+
messages = [{
|
115 |
+
"role":
|
116 |
+
"user",
|
117 |
+
"content": [
|
118 |
+
{
|
119 |
+
"type": "text",
|
120 |
+
"text": "Please provide a detailed description of this photo"
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"type": "image_url",
|
124 |
+
"image_url": f"data:image/jpeg;base64,{base64_image}"
|
125 |
+
},
|
126 |
+
],
|
127 |
+
"stream": False,
|
128 |
+
}]
|
129 |
+
|
130 |
+
partial_message = ""
|
131 |
+
for chunk in Mistralclient.chat.stream(model=model, messages=messages):
|
132 |
+
if chunk.data.choices[0].delta.content is not None:
|
133 |
+
partial_message = partial_message + chunk.data.choices[
|
134 |
+
0].delta.content
|
135 |
+
yield partial_message
|
136 |
+
except Exception as e: # 添加通用异常处理
|
137 |
+
print(f"Error: {e}")
|
138 |
+
return "Please upload a photo"
|
139 |
+
|
140 |
+
|
141 |
+
examples = [
|
142 |
+
"a beautiful woman with blonde hair and blue eyes",
|
143 |
+
"a beautiful woman with brown hair and grey eyes",
|
144 |
+
"a beautiful woman with black hair and brown eyes",
|
145 |
+
]
|
146 |
+
|
147 |
+
# CSS to style the app
|
148 |
css = """
|
149 |
+
.gradio-container {background-color: MediumAquaMarine}
|
150 |
#app-container {
|
151 |
max-width: 930px;
|
152 |
margin-left: auto;
|
153 |
margin-right: auto;
|
154 |
+
}
|
155 |
+
footer {
|
156 |
+
visibility: hidden;
|
157 |
+
}
|
158 |
"""
|
159 |
|
160 |
+
# Gradio Interface
|
161 |
+
|
162 |
+
with gr.Blocks(css=css, theme=theme) as app:
|
163 |
+
gr.HTML("<h1><center>Flux Lab</center></h1>")
|
164 |
+
with gr.Tab(label="Image To Flux Prompt"):
|
165 |
with gr.Row():
|
166 |
+
with gr.Column(scale=4):
|
167 |
+
input_img = gr.Image(label="Input Picture",height=520, type="filepath")
|
168 |
+
|
169 |
+
with gr.Column(scale=3):
|
170 |
+
output_text = gr.Textbox(label="Flux Prompt", lines=2, scale=6, show_copy_button = True)
|
171 |
+
submit_btn = gr.Button(value="Generate Pompt", scale=4, variant='primary')
|
172 |
+
clear_prompt =gr.Button("Clear 🗑️",variant="primary", elem_id="clear_button")
|
173 |
+
clear_prompt.click(lambda: (None, None), None, [input_img, output_text], queue=False, show_api=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
+
submit_btn.click(feifeichat, [input_img], [output_text])
|
|
|
|
|
|
|
|
|
|
|
176 |
|
177 |
+
with gr.Tab(label="Generate Image"):
|
178 |
+
with gr.Row():
|
179 |
+
with gr.Column(scale=4):
|
180 |
+
with gr.Row():
|
181 |
+
img_output = gr.Image(type="pil", label="Image Output", show_share_button=False, format="png", elem_id="gallery")
|
182 |
+
with gr.Row():
|
183 |
+
text_prompt = gr.Textbox(label="Image Prompt ✍️", placeholder="Enter prompt...", lines=2, scale=6, show_copy_button = True, elem_id="prompt-text-input")
|
184 |
+
text_button = gr.Button("Generate Image",scale=1, variant='primary', elem_id="gen-button")
|
185 |
+
clear_prompt =gr.Button("Clear 🗑️",variant="primary", elem_id="clear_button")
|
186 |
+
clear_prompt.click(lambda: (None, None), None, [text_prompt, img_output], queue=False, show_api=False)
|
187 |
+
with gr.Accordion("Advanced Options", open=True):
|
188 |
+
with gr.Column(scale=1):
|
189 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="( (((hands:-1.25))), physical-defects:2, unhealthy-deformed-joints:2, unhealthy-hands:2, out of frame, (((bad face))), (bad-image-v2-39000:1.3), (((out of frame))), deformed body features, (((poor facial details))), (poorly drawn face:1.3), jpeg artifacts, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), [asymmetrical features], warped expressions, distorted eyes ", lines=6, elem_id="negative-prompt-text-input")
|
190 |
+
|
191 |
+
width = gr.Slider(
|
192 |
+
label="Width",
|
193 |
+
minimum=512,
|
194 |
+
maximum=1280,
|
195 |
+
step=8,
|
196 |
+
value=896,
|
197 |
+
)
|
198 |
+
height = gr.Slider(
|
199 |
+
label="Height",
|
200 |
+
minimum=512,
|
201 |
+
maximum=1280,
|
202 |
+
step=8,
|
203 |
+
value=1152,
|
204 |
+
)
|
205 |
+
method = gr.Dropdown(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 a Karras", "DPM2 Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"])
|
206 |
+
steps = gr.Slider(
|
207 |
+
label="Sampling steps",
|
208 |
+
minimum=1,
|
209 |
+
maximum=100,
|
210 |
+
step=1,
|
211 |
+
value=24,
|
212 |
+
)
|
213 |
+
cfg = gr.Slider(
|
214 |
+
label="CFG Scale",
|
215 |
+
minimum=3.5,
|
216 |
+
maximum=7,
|
217 |
+
step=0.1,
|
218 |
+
value=3.5,
|
219 |
+
)
|
220 |
+
strength = gr.Slider(label="Strength", value=90, minimum=0, maximum=100, step=10)
|
221 |
+
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1)
|
222 |
|
223 |
+
gr.Examples(
|
224 |
+
examples = examples,
|
225 |
+
inputs = [text_prompt],
|
226 |
+
)
|
227 |
+
|
228 |
+
# Bind the button to the query function with the added width and height inputs
|
229 |
+
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=img_output)
|
230 |
+
|
231 |
+
with gr.Tab("ℹ️ Tips"):
|
232 |
+
with gr.Row():
|
233 |
+
with gr.Column():
|
234 |
+
gr.Markdown(
|
235 |
+
"""
|
236 |
+
<div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;">
|
237 |
+
<h2 style="float: left; font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2>
|
238 |
+
<ol style="padding-left: 1.5rem;">
|
239 |
+
<li>Add an image to generate a prompt, this is optional.</li>
|
240 |
+
<li>If using an image to prompt, copy the prompt and paste into the prompt on tab 2</li>
|
241 |
+
<li>Enter a detailed description of the image you want to create.</li>
|
242 |
+
<li>Adjust advanced settings if desired (tap to expand).</li>
|
243 |
+
<li>Tap "Generate Image" and wait for your creation!</li>
|
244 |
+
</ol>
|
245 |
+
<p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p>
|
246 |
+
<p style="margin-top: 1rem; font-style: italic;">*Note: Some LoRA models will not work every time (not sure why), refresh the page and try again</p>
|
247 |
+
<p style="margin-top: 1rem; font-style: italic;">*I'm still playing around to try to sort the issue, feel free to let me know if you find a fix</p>
|
248 |
+
</div>
|
249 |
+
"""
|
250 |
+
)
|
251 |
+
|
252 |
|
253 |
+
app.queue(default_concurrency_limit=200, max_size=200) # <-- Sets up a queue with default parameters
|
254 |
+
if __name__ == "__main__":
|
255 |
+
app.launch(show_api=False, share=False)
|
256 |
|