File size: 9,433 Bytes
ef6d159
743fbf0
 
 
8f8a897
743fbf0
 
 
 
ef6d159
743fbf0
 
ef6d159
743fbf0
ef6d159
743fbf0
 
 
 
 
 
 
 
 
 
 
 
 
ef6d159
743fbf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6d159
743fbf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef6d159
743fbf0
ef6d159
743fbf0
 
 
 
ef6d159
743fbf0
 
 
ef6d159
743fbf0
 
 
 
ef6d159
743fbf0
90c1c1d
743fbf0
 
90c1c1d
743fbf0
 
 
 
 
 
 
90c1c1d
743fbf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90c1c1d
743fbf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90c1c1d
743fbf0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
import json

from datetime import datetime
from fastapi import FastAPI

app = FastAPI()

#----------Start of theme----------
theme = gr.themes.Ocean(
    primary_hue="zinc",
    secondary_hue="slate",
    neutral_hue="neutral",
    font=[gr.themes.GoogleFont('Kavivanar'), gr.themes.GoogleFont('Kavivanar'), 'system-ui', 'sans-serif'],
    font_mono=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Inconsolata'), gr.themes.GoogleFont('Inconsolata'), 'monospace'],
).set(
    #Body Settings
    body_background_fill='linear-gradient(10deg, *primary_200, *secondary_50)',
    body_text_color='secondary_600',
    body_text_color_subdued='*primary_500',
    body_text_weight='500',

    #Background Settings
    background_fill_primary='*primary_100',
    background_fill_secondary='*secondary_200',
    
    color_accent='*primary_300',

    #Border Settings
    border_color_accent_subdued='*primary_400',
    border_color_primary='*primary_400',
    
    #Block Settings
    block_radius='*radius_md',
    block_background_fill='*primary_200',
    block_border_color='*primary_500',
    block_border_width='*panel_border_width',
    block_info_text_color='*primary_700',
    block_info_text_size='*text_md',
    
    container_radius='*radius_xl',
    panel_background_fill='*primary_200',
    accordion_text_color='*primary_600',
    checkbox_border_radius='*radius_xl',
    slider_color='*primary_500',
    table_text_color='*primary_600',
    input_background_fill='*primary_50',
    input_background_fill_focus='*primary_100',

    #Button Settings
    button_border_width='1px',
    button_transform_hover='scale(1.01)',
    button_transition='all 0.1s ease-in-out',
    button_transform_active='Scale(0.9)',
    button_large_radius='*radius_xl',
    button_medium_radius='*radius_xl',
    button_small_radius='*radius_xl',
    button_primary_border_color='*primary_500',
    button_secondary_border_color='*primary_400',
    button_primary_background_fill_hover='linear-gradient(90deg, *primary_400, *secondary_200, *primary_400)',
    button_primary_background_fill='linear-gradient(90deg,*secondary_300 , *primary_500, *secondary_300)',
    button_primary_text_color='*primary_100',
    button_primary_text_color_hover='*primary_700',
    button_cancel_background_fill='*primary_500',
    button_cancel_background_fill_hover='*primary_400'
)
#----------End of theme----------

# Project by Nymbo

API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100

# Function to clear input and output
def clear():
    return None 

# Function to query the API and return the generated image
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=896, height=1152):
    if prompt == "" or prompt is None:
        return None

    key = random.randint(0, 999)
    
    API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
    headers = {"Authorization": f"Bearer {API_TOKEN}"}
    
    # Translate the prompt from Russian to English if necessary
    prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
    print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')

    # Add some extra flair to the prompt
    prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
    print(f'\033[1mGeneration {key}:\033[0m {prompt}')
    
    # Prepare the payload for the API call, including width and height
    payload = {
        "inputs": prompt,
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed != -1 else random.randint(1, 1000000000),
        "strength": strength,
        "parameters": {
            "width": width,  # Pass the width to the API
            "height": height  # Pass the height to the API
        }
    }

    # Send the request to the API and handle the response
    response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
    if response.status_code != 200:
        print(f"Error: Failed to get image. Response status: {response.status_code}")
        print(f"Response content: {response.text}")
        if response.status_code == 503:
            raise gr.Error(f"{response.status_code} : The model is being loaded")
        raise gr.Error(f"{response.status_code}")
    
    try:
        # Convert the response content into an image
        image_bytes = response.content
        image = Image.open(io.BytesIO(image_bytes))
        print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
        return image
    except Exception as e:
        print(f"Error when trying to open the image: {e}")
        return None

examples = [
    "a beautiful woman with blonde hair and blue eyes",
    "a beautiful woman with brown hair and grey eyes",
    "a beautiful woman with black hair and brown eyes",
]        

# CSS to style the app
css = """
#app-container {
    max-width: 930px;
    margin-left: auto;
    margin-right: auto;
    background-image: url("https://drive.google.com/file/d/1Kz2pi93EfsEHw90fil6XJBoSq9f-BlkJ"); repeat 0 0;}')
}
".gradio-container {background: url('file/abstract.png')"
   
"""

# Build the Gradio UI with Blocks
with gr.Blocks(theme=theme, css=css) as app:
    # Add a title to the app
    gr.HTML("<center><h1>🎨 Stable Diffusion 3.5 🇬🇧</h1></center>")
    
    # Container for all the UI elements
    with gr.Column(elem_id="app-container"):
        # Add a text input for the main prompt
        with gr.Row():
            with gr.Column(elem_id="prompt-container"):
                with gr.Row():
                    text_prompt = gr.Textbox(label="Image Prompt", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input")
                
                # Accordion for advanced settings
                with gr.Row():
                    with gr.Accordion("Advanced Settings", open=False):
                        negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="((visible hand:1.3), (ugly:1.3), (duplicate:1.2), (morbid:1.1), (mutilated:1.1), out of frame, bad face, extra fingers, mutated hands, (poorly drawn hands:1.1), (poorly drawn face:1.3), (mutation:1.3), (deformed:1.3), blurry, (bad anatomy:1.1), (bad proportions:1.2), (extra limbs:1.1), cloned face, (disfigured:1.2), gross proportions, malformed limbs, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), fused fingers, too many fingers, (long neck:1.2), sketched by bad-artist, (bad-image-v2-39000:1.3)", lines=5, elem_id="negative-prompt-text-input")
                        with gr.Row():
                            width = gr.Slider(label="ImageWidth", value=896, minimum=64, maximum=1216, step=32)
                            height = gr.Slider(label="Image Height", value=1152, minimum=64, maximum=1216, step=32)
                        steps = gr.Slider(label="Sampling steps", value=50, minimum=1, maximum=100, step=1)
                        cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=1)
                        strength = gr.Slider(label="PromptStrength", value=100, minimum=0, maximum=100, step=1)
                        seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # Setting the seed to -1 will make it random
                        method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "PLMS", "UniPC", "UniPC BH2"])

        # Add a button to trigger the image generation
        with gr.Row():
            text_button = gr.Button("Generate Image", variant='primary', elem_id="gen-button")
            clr_button =gr.Button("Clear Prompt",variant="primary", elem_id="clear_button")
            clr_button.click(lambda: gr.Textbox(value=""), None, text_prompt)
            
        # Image output area to display the generated image
        with gr.Row():
            image_output1 = gr.Image(type="pil", label="Image Output 1", format="png", elem_id="gallery")
            image_output2 = gr.Image(type="pil", label="Image Output 2", format="png", elem_id="gallery")			
            
        with gr.Row():
            clear_btn = gr.Button(value="Clear Image", variant="primary", elem_id="clear_button")
            clear_btn.click(clear, inputs=[], outputs=[image_output])
            
        gr.Examples(
            examples = examples,    
            inputs = [text_prompt],    
        )    
            
        # Bind the button to the query function with the added width and height inputs
        text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=[image_output1, image_output2])

        if __name__ == "__main__":
            
            # Launch the Gradio app
            app.launch(show_api=False, share=False)