File size: 9,433 Bytes
ef6d159 743fbf0 8f8a897 743fbf0 ef6d159 743fbf0 ef6d159 743fbf0 ef6d159 743fbf0 ef6d159 743fbf0 ef6d159 743fbf0 ef6d159 743fbf0 ef6d159 743fbf0 ef6d159 743fbf0 ef6d159 743fbf0 ef6d159 743fbf0 90c1c1d 743fbf0 90c1c1d 743fbf0 90c1c1d 743fbf0 90c1c1d 743fbf0 90c1c1d 743fbf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
import json
from datetime import datetime
from fastapi import FastAPI
app = FastAPI()
#----------Start of theme----------
theme = gr.themes.Ocean(
primary_hue="zinc",
secondary_hue="slate",
neutral_hue="neutral",
font=[gr.themes.GoogleFont('Kavivanar'), gr.themes.GoogleFont('Kavivanar'), 'system-ui', 'sans-serif'],
font_mono=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Inconsolata'), gr.themes.GoogleFont('Inconsolata'), 'monospace'],
).set(
#Body Settings
body_background_fill='linear-gradient(10deg, *primary_200, *secondary_50)',
body_text_color='secondary_600',
body_text_color_subdued='*primary_500',
body_text_weight='500',
#Background Settings
background_fill_primary='*primary_100',
background_fill_secondary='*secondary_200',
color_accent='*primary_300',
#Border Settings
border_color_accent_subdued='*primary_400',
border_color_primary='*primary_400',
#Block Settings
block_radius='*radius_md',
block_background_fill='*primary_200',
block_border_color='*primary_500',
block_border_width='*panel_border_width',
block_info_text_color='*primary_700',
block_info_text_size='*text_md',
container_radius='*radius_xl',
panel_background_fill='*primary_200',
accordion_text_color='*primary_600',
checkbox_border_radius='*radius_xl',
slider_color='*primary_500',
table_text_color='*primary_600',
input_background_fill='*primary_50',
input_background_fill_focus='*primary_100',
#Button Settings
button_border_width='1px',
button_transform_hover='scale(1.01)',
button_transition='all 0.1s ease-in-out',
button_transform_active='Scale(0.9)',
button_large_radius='*radius_xl',
button_medium_radius='*radius_xl',
button_small_radius='*radius_xl',
button_primary_border_color='*primary_500',
button_secondary_border_color='*primary_400',
button_primary_background_fill_hover='linear-gradient(90deg, *primary_400, *secondary_200, *primary_400)',
button_primary_background_fill='linear-gradient(90deg,*secondary_300 , *primary_500, *secondary_300)',
button_primary_text_color='*primary_100',
button_primary_text_color_hover='*primary_700',
button_cancel_background_fill='*primary_500',
button_cancel_background_fill_hover='*primary_400'
)
#----------End of theme----------
# Project by Nymbo
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
# Function to clear input and output
def clear():
return None
# Function to query the API and return the generated image
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=896, height=1152):
if prompt == "" or prompt is None:
return None
key = random.randint(0, 999)
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
headers = {"Authorization": f"Bearer {API_TOKEN}"}
# Translate the prompt from Russian to English if necessary
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
# Add some extra flair to the prompt
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
# Prepare the payload for the API call, including width and height
payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1000000000),
"strength": strength,
"parameters": {
"width": width, # Pass the width to the API
"height": height # Pass the height to the API
}
}
# Send the request to the API and handle the response
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Error: Failed to get image. Response status: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 503:
raise gr.Error(f"{response.status_code} : The model is being loaded")
raise gr.Error(f"{response.status_code}")
try:
# Convert the response content into an image
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
return image
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None
examples = [
"a beautiful woman with blonde hair and blue eyes",
"a beautiful woman with brown hair and grey eyes",
"a beautiful woman with black hair and brown eyes",
]
# CSS to style the app
css = """
#app-container {
max-width: 930px;
margin-left: auto;
margin-right: auto;
background-image: url("https://drive.google.com/file/d/1Kz2pi93EfsEHw90fil6XJBoSq9f-BlkJ"); repeat 0 0;}')
}
".gradio-container {background: url('file/abstract.png')"
"""
# Build the Gradio UI with Blocks
with gr.Blocks(theme=theme, css=css) as app:
# Add a title to the app
gr.HTML("<center><h1>🎨 Stable Diffusion 3.5 🇬🇧</h1></center>")
# Container for all the UI elements
with gr.Column(elem_id="app-container"):
# Add a text input for the main prompt
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Row():
text_prompt = gr.Textbox(label="Image Prompt", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input")
# Accordion for advanced settings
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="((visible hand:1.3), (ugly:1.3), (duplicate:1.2), (morbid:1.1), (mutilated:1.1), out of frame, bad face, extra fingers, mutated hands, (poorly drawn hands:1.1), (poorly drawn face:1.3), (mutation:1.3), (deformed:1.3), blurry, (bad anatomy:1.1), (bad proportions:1.2), (extra limbs:1.1), cloned face, (disfigured:1.2), gross proportions, malformed limbs, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), fused fingers, too many fingers, (long neck:1.2), sketched by bad-artist, (bad-image-v2-39000:1.3)", lines=5, elem_id="negative-prompt-text-input")
with gr.Row():
width = gr.Slider(label="ImageWidth", value=896, minimum=64, maximum=1216, step=32)
height = gr.Slider(label="Image Height", value=1152, minimum=64, maximum=1216, step=32)
steps = gr.Slider(label="Sampling steps", value=50, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=1)
strength = gr.Slider(label="PromptStrength", value=100, minimum=0, maximum=100, step=1)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # Setting the seed to -1 will make it random
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "PLMS", "UniPC", "UniPC BH2"])
# Add a button to trigger the image generation
with gr.Row():
text_button = gr.Button("Generate Image", variant='primary', elem_id="gen-button")
clr_button =gr.Button("Clear Prompt",variant="primary", elem_id="clear_button")
clr_button.click(lambda: gr.Textbox(value=""), None, text_prompt)
# Image output area to display the generated image
with gr.Row():
image_output1 = gr.Image(type="pil", label="Image Output 1", format="png", elem_id="gallery")
image_output2 = gr.Image(type="pil", label="Image Output 2", format="png", elem_id="gallery")
with gr.Row():
clear_btn = gr.Button(value="Clear Image", variant="primary", elem_id="clear_button")
clear_btn.click(clear, inputs=[], outputs=[image_output])
gr.Examples(
examples = examples,
inputs = [text_prompt],
)
# Bind the button to the query function with the added width and height inputs
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=[image_output1, image_output2])
if __name__ == "__main__":
# Launch the Gradio app
app.launch(show_api=False, share=False)
|