Fluxit / app.py
DigiP-AI's picture
Update app.py
23d7cdc verified
raw
history blame
9.16 kB
import gradio as gr
import requests
import io
import random
import os
import time
from PIL import Image
from deep_translator import GoogleTranslator
import json
from datetime import datetime
from fastapi import FastAPI
app = FastAPI()
#----------Start of theme----------
theme = gr.themes.Ocean(
primary_hue="zinc",
secondary_hue="slate",
neutral_hue="neutral",
font=[gr.themes.GoogleFont('Kavivanar'), gr.themes.GoogleFont('Kavivanar'), 'system-ui', 'sans-serif'],
font_mono=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Inconsolata'), gr.themes.GoogleFont('Inconsolata'), 'monospace'],
).set(
#Body Settings
body_background_fill='linear-gradient(10deg, *primary_200, *secondary_50)',
body_text_color='secondary_600',
body_text_color_subdued='*primary_500',
body_text_weight='500',
#Background Settings
background_fill_primary='*primary_100',
background_fill_secondary='*secondary_200',
color_accent='*primary_300',
#Border Settings
border_color_accent_subdued='*primary_400',
border_color_primary='*primary_400',
#Block Settings
block_radius='*radius_md',
block_background_fill='*primary_200',
block_border_color='*primary_500',
block_border_width='*panel_border_width',
block_info_text_color='*primary_700',
block_info_text_size='*text_md',
container_radius='*radius_xl',
panel_background_fill='*primary_200',
accordion_text_color='*primary_600',
checkbox_border_radius='*radius_xl',
slider_color='*primary_500',
table_text_color='*primary_600',
input_background_fill='*primary_50',
input_background_fill_focus='*primary_100',
#Button Settings
button_border_width='1px',
button_transform_hover='scale(1.01)',
button_transition='all 0.1s ease-in-out',
button_transform_active='Scale(0.9)',
button_large_radius='*radius_xl',button_small_radius='*radius_xl',
button_primary_border_color='*primary_500',
button_secondary_border_color='*primary_400',
button_primary_background_fill_hover='linear-gradient(90deg, *primary_400, *secondary_200, *primary_400)',
button_primary_background_fill='linear-gradient(90deg,*secondary_300 , *primary_500, *secondary_300)',
button_primary_text_color='*primary_100',
button_primary_text_color_hover='*primary_700',
button_cancel_background_fill='*primary_500',
button_cancel_background_fill_hover='*primary_400'
)
#----------End of theme----------
# Project by Nymbo
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
# Function to clear input and output
def clear():
return None
# Function to query the API and return the generated image
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=896, height=1152):
if prompt == "" or prompt is None:
return None
key = random.randint(0, 999)
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
headers = {"Authorization": f"Bearer {API_TOKEN}"}
# Translate the prompt from Russian to English if necessary
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
# Add some extra flair to the prompt
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
# Prepare the payload for the API call, including width and height
payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1000000000),
"strength": strength,
"parameters": {
"width": width, # Pass the width to the API
"height": height # Pass the height to the API
}
}
# Send the request to the API and handle the response
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Error: Failed to get image. Response status: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 503:
raise gr.Error(f"{response.status_code} : The model is being loaded")
raise gr.Error(f"{response.status_code}")
try:
# Convert the response content into an image
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
return image
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None
examples = [
"a beautiful woman with blonde hair and blue eyes",
"a beautiful woman with brown hair and grey eyes",
"a beautiful woman with black hair and brown eyes",
]
# CSS to style the app
css = """
#app-container {
max-width: 930px;
margin-left: auto;
margin-right: auto;
background-image: url("https://drive.google.com/file/d/1Kz2pi93EfsEHw90fil6XJBoSq9f-BlkJ"); repeat 0 0;}')
}
".gradio-container {background: url('file/abstract.png')"
"""
# Build the Gradio UI with Blocks
with gr.Blocks(theme=theme, css=css) as app:
# Add a title to the app
gr.HTML("<center><h1>🎨 Stable Diffusion 3.5 🇬🇧</h1></center>")
# Container for all the UI elements
with gr.Column(elem_id="app-container"):
# Add a text input for the main prompt
text_prompt = gr.Textbox(label="Image Prompt", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input")
# Accordion for advanced settings
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="((visible hand:1.3), (ugly:1.3), (duplicate:1.2), (morbid:1.1), (mutilated:1.1), out of frame, bad face, extra fingers, mutated hands, (poorly drawn hands:1.1), (poorly drawn face:1.3), (mutation:1.3), (deformed:1.3), blurry, (bad anatomy:1.1), (bad proportions:1.2), (extra limbs:1.1), cloned face, (disfigured:1.2), gross proportions, malformed limbs, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), fused fingers, too many fingers, (long neck:1.2), sketched by bad-artist, (bad-image-v2-39000:1.3)", lines=5, elem_id="negative-prompt-text-input")
with gr.Row():
width = gr.Slider(label="ImageWidth", value=896, minimum=64, maximum=1216, step=32)
height = gr.Slider(label="Image Height", value=1152, minimum=64, maximum=1216, step=32)
steps = gr.Slider(label="Sampling steps", value=50, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=1)
strength = gr.Slider(label="PromptStrength", value=100, minimum=0, maximum=100, step=1)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # Setting the seed to -1 will make it random
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "PLMS", "UniPC", "UniPC BH2"])
# Add a button to trigger the image generation
with gr.Row():
text_button = gr.Button("Generate Image", variant='primary', elem_id="gen-button")
clr_button =gr.Button("Clear Prompt",variant="primary", elem_id="clear_button")
clr_button.click(lambda: gr.Textbox(value=""), None, text_prompt)
# Image output area to display the generated image
with gr.Row():
image_output1 = gr.Image(type="pil", label="Image Output 1", format="png", elem_id="gallery")
#image_output2 = gr.Image(type="pil", label="Image Output 2", format="png", elem_id="gallery")
with gr.Row():
clear_btn = gr.Button(value="Clear Image", variant="primary", elem_id="clear_button")
clear_btn.click(clear, inputs=[], outputs=image_output1)
gr.Examples(
examples = examples,
inputs = [text_prompt],
)
# Bind the button to the query function with the added width and height inputs
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output1)
if __name__ == "__main__":
# Launch the Gradio app
app.launch(show_api=False, share=False)