|
import gradio as gr |
|
import requests |
|
import io |
|
import random |
|
import os |
|
import time |
|
from PIL import Image |
|
from deep_translator import GoogleTranslator |
|
import json |
|
|
|
from datetime import datetime |
|
from fastapi import FastAPI |
|
|
|
app = FastAPI() |
|
|
|
|
|
theme = gr.themes.Ocean( |
|
primary_hue="zinc", |
|
secondary_hue="slate", |
|
neutral_hue="neutral", |
|
font=[gr.themes.GoogleFont('Kavivanar'), gr.themes.GoogleFont('Kavivanar'), 'system-ui', 'sans-serif'], |
|
font_mono=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Inconsolata'), gr.themes.GoogleFont('Inconsolata'), 'monospace'], |
|
).set( |
|
|
|
body_background_fill='linear-gradient(10deg, *primary_200, *secondary_50)', |
|
body_text_color='secondary_600', |
|
body_text_color_subdued='*primary_500', |
|
body_text_weight='500', |
|
|
|
|
|
background_fill_primary='*primary_100', |
|
background_fill_secondary='*secondary_200', |
|
|
|
color_accent='*primary_300', |
|
|
|
|
|
border_color_accent_subdued='*primary_400', |
|
border_color_primary='*primary_400', |
|
|
|
|
|
block_radius='*radius_md', |
|
block_background_fill='*primary_200', |
|
block_border_color='*primary_500', |
|
block_border_width='*panel_border_width', |
|
block_info_text_color='*primary_700', |
|
block_info_text_size='*text_md', |
|
|
|
container_radius='*radius_xl', |
|
panel_background_fill='*primary_200', |
|
accordion_text_color='*primary_600', |
|
checkbox_border_radius='*radius_xl', |
|
slider_color='*primary_500', |
|
table_text_color='*primary_600', |
|
input_background_fill='*primary_50', |
|
input_background_fill_focus='*primary_100', |
|
|
|
|
|
button_border_width='1px', |
|
button_transform_hover='scale(1.01)', |
|
button_transition='all 0.1s ease-in-out', |
|
button_transform_active='Scale(0.9)', |
|
button_large_radius='*radius_xl',button_small_radius='*radius_xl', |
|
button_primary_border_color='*primary_500', |
|
button_secondary_border_color='*primary_400', |
|
button_primary_background_fill_hover='linear-gradient(90deg, *primary_400, *secondary_200, *primary_400)', |
|
button_primary_background_fill='linear-gradient(90deg,*secondary_300 , *primary_500, *secondary_300)', |
|
button_primary_text_color='*primary_100', |
|
button_primary_text_color_hover='*primary_700', |
|
button_cancel_background_fill='*primary_500', |
|
button_cancel_background_fill_hover='*primary_400' |
|
) |
|
|
|
|
|
|
|
|
|
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large" |
|
API_TOKEN = os.getenv("HF_READ_TOKEN") |
|
headers = {"Authorization": f"Bearer {API_TOKEN}"} |
|
timeout = 100 |
|
|
|
|
|
def clear(): |
|
return None |
|
|
|
|
|
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=896, height=1152): |
|
if prompt == "" or prompt is None: |
|
return None |
|
|
|
key = random.randint(0, 999) |
|
|
|
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")]) |
|
headers = {"Authorization": f"Bearer {API_TOKEN}"} |
|
|
|
|
|
prompt = GoogleTranslator(source='ru', target='en').translate(prompt) |
|
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') |
|
|
|
|
|
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." |
|
print(f'\033[1mGeneration {key}:\033[0m {prompt}') |
|
|
|
|
|
payload = { |
|
"inputs": prompt, |
|
"is_negative": is_negative, |
|
"steps": steps, |
|
"cfg_scale": cfg_scale, |
|
"seed": seed if seed != -1 else random.randint(1, 1000000000), |
|
"strength": strength, |
|
"parameters": { |
|
"width": width, |
|
"height": height |
|
} |
|
} |
|
|
|
|
|
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) |
|
if response.status_code != 200: |
|
print(f"Error: Failed to get image. Response status: {response.status_code}") |
|
print(f"Response content: {response.text}") |
|
if response.status_code == 503: |
|
raise gr.Error(f"{response.status_code} : The model is being loaded") |
|
raise gr.Error(f"{response.status_code}") |
|
|
|
try: |
|
|
|
image_bytes = response.content |
|
image = Image.open(io.BytesIO(image_bytes)) |
|
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') |
|
return image |
|
except Exception as e: |
|
print(f"Error when trying to open the image: {e}") |
|
return None |
|
|
|
examples = [ |
|
"a beautiful woman with blonde hair and blue eyes", |
|
"a beautiful woman with brown hair and grey eyes", |
|
"a beautiful woman with black hair and brown eyes", |
|
] |
|
|
|
|
|
css = """ |
|
#app-container { |
|
max-width: 930px; |
|
margin-left: auto; |
|
margin-right: auto; |
|
background-image: url("https://drive.google.com/file/d/1Kz2pi93EfsEHw90fil6XJBoSq9f-BlkJ"); repeat 0 0;}') |
|
} |
|
".gradio-container {background: url('file/abstract.png')" |
|
|
|
""" |
|
|
|
|
|
with gr.Blocks(theme=theme, css=css) as app: |
|
|
|
gr.HTML("<center><h1>🎨 Stable Diffusion 3.5 🇬🇧</h1></center>") |
|
|
|
|
|
with gr.Column(elem_id="app-container"): |
|
|
|
text_prompt = gr.Textbox(label="Image Prompt", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input") |
|
|
|
|
|
with gr.Row(): |
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="((visible hand:1.3), (ugly:1.3), (duplicate:1.2), (morbid:1.1), (mutilated:1.1), out of frame, bad face, extra fingers, mutated hands, (poorly drawn hands:1.1), (poorly drawn face:1.3), (mutation:1.3), (deformed:1.3), blurry, (bad anatomy:1.1), (bad proportions:1.2), (extra limbs:1.1), cloned face, (disfigured:1.2), gross proportions, malformed limbs, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), fused fingers, too many fingers, (long neck:1.2), sketched by bad-artist, (bad-image-v2-39000:1.3)", lines=5, elem_id="negative-prompt-text-input") |
|
with gr.Row(): |
|
width = gr.Slider(label="ImageWidth", value=896, minimum=64, maximum=1216, step=32) |
|
height = gr.Slider(label="Image Height", value=1152, minimum=64, maximum=1216, step=32) |
|
steps = gr.Slider(label="Sampling steps", value=50, minimum=1, maximum=100, step=1) |
|
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=1) |
|
strength = gr.Slider(label="PromptStrength", value=100, minimum=0, maximum=100, step=1) |
|
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) |
|
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "PLMS", "UniPC", "UniPC BH2"]) |
|
|
|
|
|
with gr.Row(): |
|
text_button = gr.Button("Generate Image", variant='primary', elem_id="gen-button") |
|
clr_button =gr.Button("Clear Prompt",variant="primary", elem_id="clear_button") |
|
clr_button.click(lambda: gr.Textbox(value=""), None, text_prompt) |
|
|
|
|
|
with gr.Row(): |
|
image_output1 = gr.Image(type="pil", label="Image Output 1", format="png", elem_id="gallery") |
|
|
|
|
|
with gr.Row(): |
|
clear_btn = gr.Button(value="Clear Image", variant="primary", elem_id="clear_button") |
|
clear_btn.click(clear, inputs=[], outputs=image_output1) |
|
|
|
gr.Examples( |
|
examples = examples, |
|
inputs = [text_prompt], |
|
) |
|
|
|
|
|
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output1) |
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
app.launch(show_api=False, share=False) |
|
|