Spaces:
Build error
Build error
import gradio as gr | |
import cv2 | |
import numpy as np | |
import os | |
from datetime import datetime | |
import random | |
from transformers import pipeline | |
import torch | |
from diffusers import FluxPipeline | |
#----------Start of theme---------- | |
theme = gr.themes.Soft( | |
primary_hue="zinc", | |
secondary_hue="stone", | |
font=[gr.themes.GoogleFont('Kavivanar'), gr.themes.GoogleFont('Kavivanar'), 'system-ui', 'sans-serif'], | |
font_mono=[gr.themes.GoogleFont('Source Code Pro'), gr.themes.GoogleFont('Inconsolata'), gr.themes.GoogleFont('Inconsolata'), 'monospace'], | |
).set( | |
body_background_fill='*primary_100', | |
body_text_color='secondary_600', | |
body_text_color_subdued='*primary_500', | |
body_text_weight='500', | |
background_fill_primary='*primary_100', | |
background_fill_secondary='*secondary_200', | |
color_accent='*primary_300', | |
border_color_accent_subdued='*primary_400', | |
border_color_primary='*primary_400', | |
block_background_fill='*primary_300', | |
block_border_width='*panel_border_width', | |
block_info_text_color='*primary_700', | |
block_info_text_size='*text_md', | |
panel_background_fill='*primary_200', | |
accordion_text_color='*primary_600', | |
table_text_color='*primary_600', | |
input_background_fill='*primary_50', | |
input_background_fill_focus='*primary_100', | |
button_primary_background_fill='*primary_500', | |
button_primary_background_fill_hover='*primary_400', | |
button_primary_text_color='*primary_50', | |
button_primary_text_color_hover='*primary_100', | |
button_cancel_background_fill='*primary_500', | |
button_cancel_background_fill_hover='*primary_400' | |
) | |
#----------End of theme---------- | |
API_TOKEN = os.getenv("HF_READ_TOKEN") | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
timeout = 100 | |
def flip_image(x): | |
return np.fliplr(x) | |
def basic_filter(image, filter_type): | |
"""Apply basic image filters""" | |
if filter_type == "Gray Toning": | |
return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
elif filter_type == "Sepia": | |
sepia_filter = np.array([ | |
[0.272, 0.534, 0.131], | |
[0.349, 0.686, 0.168], | |
[0.393, 0.769, 0.189] | |
]) | |
return cv2.transform(image, sepia_filter) | |
elif filter_type == "X-ray": | |
# Improved X-ray effect | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
inverted = cv2.bitwise_not(gray) | |
# Increase contrast | |
clahe = cv2.createCLAHE(clipLimit=3.0, tileGridSize=(8,8)) | |
enhanced = clahe.apply(inverted) | |
# Sharpen | |
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) | |
sharpened = cv2.filter2D(enhanced, -1, kernel) | |
return cv2.cvtColor(sharpened, cv2.COLOR_GRAY2BGR) | |
elif filter_type == "Burn it": | |
return cv2.GaussianBlur(image, (15, 15), 0) | |
def classic_filter(image, filter_type): | |
"""Classical display filters""" | |
if filter_type == "Charcoal Effect": | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
inverted = cv2.bitwise_not(gray) | |
blurred = cv2.GaussianBlur(inverted, (21, 21), 0) | |
sketch = cv2.divide(gray, cv2.subtract(255, blurred), scale=256) | |
return cv2.cvtColor(sketch, cv2.COLOR_GRAY2BGR) | |
elif filter_type == "Sharpen": | |
kernel = np.array([[-1,-1,-1], [-1,9,-1], [-1,-1,-1]]) | |
return cv2.filter2D(image, -1, kernel) | |
elif filter_type == "Embossing": | |
kernel = np.array([[0,-1,-1], [1,0,-1], [1,1,0]]) | |
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
emboss = cv2.filter2D(gray, -1, kernel) + 128 | |
return cv2.cvtColor(emboss, cv2.COLOR_GRAY2BGR) | |
elif filter_type == "Edge Detection": | |
edges = cv2.Canny(image, 100, 200) | |
return cv2.cvtColor(edges, cv2.COLOR_GRAY2BGR) | |
def creative_filters(image, filter_type): | |
"""Creative and unusual image filters""" | |
if filter_type == "Pixel Art": | |
h, w = image.shape[:2] | |
piksel_size = 20 | |
small = cv2.resize(image, (w//piksel_size, h//piksel_size)) | |
return cv2.resize(small, (w, h), interpolation=cv2.INTER_NEAREST) | |
elif filter_type == "Mosaic Effect": | |
h, w = image.shape[:2] | |
mosaic_size = 30 | |
for i in range(0, h, mosaic_size): | |
for j in range(0, w, mosaic_size): | |
roi = image[i:i+mosaic_size, j:j+mosaic_size] | |
if roi.size > 0: | |
color = np.mean(roi, axis=(0,1)) | |
image[i:i+mosaic_size, j:j+mosaic_size] = color | |
return image | |
elif filter_type == "Rainbow": | |
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) | |
h, w = image.shape[:2] | |
for i in range(h): | |
hsv[i, :, 0] = (hsv[i, :, 0] + i % 180).astype(np.uint8) | |
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | |
elif filter_type == "Night Vision": | |
green_image = image.copy() | |
green_image[:,:,0] = 0 # Blue channel | |
green_image[:,:,2] = 0 # Red channel | |
return cv2.addWeighted(green_image, 1.5, np.zeros(image.shape, image.dtype), 0, -50) | |
def special_effects(image, filter_type): | |
"""Apply special effects""" | |
if filter_type == "Matrix Effect": | |
green_matrix = np.zeros_like(image) | |
green_matrix[:,:,1] = image[:,:,1] # Only green channel | |
random_brightness = np.random.randint(0, 255, size=image.shape[:2]) | |
green_matrix[:,:,1] = np.minimum(green_matrix[:,:,1] + random_brightness, 255) | |
return green_matrix | |
elif filter_type == "Wave Effect": | |
rows, cols = image.shape[:2] | |
img_output = np.zeros(image.shape, dtype=image.dtype) | |
for i in range(rows): | |
for j in range(cols): | |
offset_x = int(25.0 * np.sin(2 * 3.14 * i / 180)) | |
offset_y = int(25.0 * np.cos(2 * 3.14 * j / 180)) | |
if i+offset_x < rows and j+offset_y < cols: | |
img_output[i,j] = image[(i+offset_x)%rows,(j+offset_y)%cols] | |
else: | |
img_output[i,j] = 0 | |
return img_output | |
elif filter_type == "Time Stamp": | |
output = image.copy() | |
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S") | |
font = cv2.FONT_HERSHEY_SIMPLEX | |
cv2.putText(output, timestamp, (10, 30), font, 1, (255, 255, 255), 2) | |
return output | |
elif filter_type == "Glitch Effect": | |
glitch = image.copy() | |
h, w = image.shape[:2] | |
for _ in range(10): | |
x1 = random.randint(0, w-50) | |
y1 = random.randint(0, h-50) | |
x2 = random.randint(x1, min(x1+50, w)) | |
y2 = random.randint(y1, min(y1+50, h)) | |
glitch[y1:y2, x1:x2] = np.roll(glitch[y1:y2, x1:x2], | |
random.randint(-20, 20), | |
axis=random.randint(0, 1)) | |
return glitch | |
def artistic_filters(image, filter_type): | |
"""Applies artistic image filters""" | |
if filter_type == "Pop Art": | |
img_small = cv2.resize(image, None, fx=0.5, fy=0.5) | |
img_color = cv2.resize(img_small, (image.shape[1], image.shape[0])) | |
for _ in range(2): | |
img_color = cv2.bilateralFilter(img_color, 9, 300, 300) | |
hsv = cv2.cvtColor(img_color, cv2.COLOR_BGR2HSV) | |
hsv[:,:,1] = hsv[:,:,1]*1.5 | |
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | |
elif filter_type == "Oil Paint": | |
ret = np.float32(image.copy()) | |
ret = cv2.bilateralFilter(ret, 9, 75, 75) | |
ret = cv2.detailEnhance(ret, sigma_s=15, sigma_r=0.15) | |
ret = cv2.edgePreservingFilter(ret, flags=1, sigma_s=60, sigma_r=0.4) | |
return np.uint8(ret) | |
elif filter_type == "Cartoon": | |
# Improved cartoon effect | |
color = image.copy() | |
gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY) | |
gray = cv2.medianBlur(gray, 5) | |
edges = cv2.adaptiveThreshold(gray, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 9, 9) | |
color = cv2.bilateralFilter(color, 9, 300, 300) | |
cartoon = cv2.bitwise_and(color, color, mask=edges) | |
# Increase color saturation | |
hsv = cv2.cvtColor(cartoon, cv2.COLOR_BGR2HSV) | |
hsv[:,:,1] = hsv[:,:,1]*1.4 # saturation increase | |
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | |
def atmospheric_filters(image, filter_type): | |
"""atmospheric filters""" | |
if filter_type == "Autumn": | |
# Genhanced autumn effect | |
autumn_filter = np.array([ | |
[0.393, 0.769, 0.189], | |
[0.349, 0.686, 0.168], | |
[0.272, 0.534, 0.131] | |
]) | |
autumn = cv2.transform(image, autumn_filter) | |
# Increase color temperature | |
hsv = cv2.cvtColor(autumn, cv2.COLOR_BGR2HSV) | |
hsv[:,:,0] = hsv[:,:,0]*0.8 # Shift to orange/yellow tones | |
hsv[:,:,1] = hsv[:,:,1]*1.2 # Increase saturation | |
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR) | |
elif filter_type == "Nostalgia": | |
# Improved nostalgia effect | |
# Reduce contrast and add yellowish tone | |
image = cv2.convertScaleAbs(image, alpha=0.9, beta=10) | |
sepia = cv2.transform(image, np.array([ | |
[0.393, 0.769, 0.189], | |
[0.349, 0.686, 0.168], | |
[0.272, 0.534, 0.131] | |
])) | |
# Darkening effect in corners | |
h, w = image.shape[:2] | |
kernel = np.zeros((h, w)) | |
center = (h//2, w//2) | |
for i in range(h): | |
for j in range(w): | |
dist = np.sqrt((i-center[0])**2 + (j-center[1])**2) | |
kernel[i,j] = 1 - min(1, dist/(np.sqrt(h**2 + w**2)/2)) | |
kernel = np.dstack([kernel]*3) | |
return cv2.multiply(sepia, kernel).astype(np.uint8) | |
elif filter_type == "Increase Brightness": | |
# Improved brightness boost | |
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) | |
# Increase brightness | |
hsv[:,:,2] = cv2.convertScaleAbs(hsv[:,:,2], alpha=1.2, beta=30) | |
# Also increase the contrast slightly | |
return cv2.convertScaleAbs(cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR), alpha=1.1, beta=0) | |
def image_processing(image, filter_type): | |
"""Main image processing function""" | |
if image is None: | |
return None | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
# Process by filter categories | |
basic_filter_list = ["Gray Toning", "Sepia", "X-ray", "Burn it"] | |
classic_filter_list = ["Charcoal Effect", "Sharpen", "Embossing", "Edge Detection"] | |
creative_filters_list = ["Rainbow", "Night Vision"] | |
special_effects_list = ["Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect"] | |
artistic_filters_list = ["Pop Art", "Oil Paint", "Cartoon"] | |
atmospheric_filters_list = ["Autumn", "Increase Brightness"] | |
if filter_type in basic_filter_list: | |
output = basic_filter(image, filter_type) | |
elif filter_type in classic_filter_list: | |
output = classic_filter(image, filter_type) | |
elif filter_type in creative_filters_list: | |
output = creative_filters(image, filter_type) | |
elif filter_type in special_effects_list: | |
output = special_effects(image, filter_type) | |
elif filter_type in artistic_filters_list: | |
output = artistic_filters(image, filter_type) | |
elif filter_type in atmospheric_filters_list: | |
output = atmospheric_filters(image, filter_type) | |
else: | |
output = image | |
return cv2.cvtColor(output, cv2.COLOR_BGR2RGB) if len(output.shape) == 3 else output | |
css = """ | |
#app-container { | |
max-width: 1200px; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
""" | |
# Gradio interface | |
with gr.Blocks(theme=theme, css=css) as app: | |
gr.HTML("<center><h6>🎨 Image Studio</h6></center>") | |
with gr.Tab("Text to Image"): | |
#gr.HTML("<center><b>Flux</b></center>") | |
#gr.load("models/XLabs-AI/flux-RealismLora") | |
#gr.load("models/digiplay/AnalogMadness-realistic-model-v7") | |
#gr.load("stabilityai/stable-diffusion-3-medium-diffusers") | |
def query(prompt, is_negative=False, steps=28, cfg_scale=3.5, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=1024, height=1024): | |
if prompt == "" or prompt == None: | |
return None | |
# Prepare the payload for the API call, including width and height | |
payload = { | |
"inputs": prompt, | |
"is_negative": is_negative, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"seed": seed if seed != -1 else random.randint(1, 1000000000), | |
"strength": strength, | |
"parameters": { | |
"width": width, # Pass the width to the API | |
"height": height # Pass the height to the API | |
} | |
} | |
model=("models/dvyio/flux-lora-film-noir") | |
with gr.Row(model): | |
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input") | |
with gr.Row(model): | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="((((out of frame))), deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input") | |
with gr.Row(model): | |
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32) | |
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32) | |
steps = gr.Slider(label="Sampling steps", value=28, minimum=1, maximum=100, step=1) | |
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=0.5) | |
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001) | |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) | |
with gr.Row(model): | |
with gr.Accordion("Seed", open=False): | |
seed_output = gr.Textbox(label="Seed Used", show_copy_button = True, elem_id="seed-output") | |
with gr.Row(model): | |
text_button = gr.Button("Run", variant='primary', elem_id="gen-button") | |
with gr.Row(model): | |
image_output = gr.Image(type="pil", label="Image Output", format="png", elem_id="gallery") | |
text_button.click(query, inputs=[custom_lora, text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=[image_output, seed_output]) | |
with gr.Tab("Flip Image"): | |
with gr.Row(): | |
mage_input = gr.Image(type="numpy", label="Upload Image") | |
image_output = gr.Image(format="png") | |
with gr.Row(): | |
image_button = gr.Button("Run", variant='primary') | |
image_button.click(flip_image, inputs=image_input, outputs=image_output) | |
with gr.Tab("Image Filters"): | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="numpy", label="Upload Image") | |
with gr.Accordion("ℹ️ Filter Categories", open=True): | |
filter_type = gr.Dropdown( | |
[ | |
# Basic Filters | |
"Gray Toning", "Sepia", "X-ray", "Burn it", | |
# Classic Filter | |
"Charcoal Effect", "Sharpen", "Embossing", "Edge Detection", | |
# Creative Filters | |
"Rainbow", "Night Vision", | |
# Special Effects | |
"Matrix Effect", "Wave Effect", "Time Stamp", "Glitch Effect", | |
# Artistic Filters | |
"Pop Art", "Oil Paint", "Cartoon", | |
# Atmospheric Filters | |
"Autumn", "Increase Brightness" | |
], | |
label="🎭 Select Filter", | |
info="Choose the effect you want" | |
) | |
submit_button = gr.Button("✨ Apply Filter", variant="primary") | |
with gr.Column(): | |
image_output = gr.Image(label="🖼️ Filtered Image", format="png") | |
submit_button.click( | |
image_processing, | |
inputs=[image_input, filter_type], | |
outputs=image_output | |
) | |
with gr.Tab("Image Upscaler"): | |
with gr.Row(): | |
with gr.Column(): | |
def upscale_image(input_image, radio_input): | |
upscale_factor = radio_input | |
output_image = cv2.resize(input_image, None, fx = upscale_factor, fy = upscale_factor, interpolation = cv2.INTER_CUBIC) | |
return output_image | |
radio_input = gr.Radio(label="Upscale Levels", choices=[2, 4, 6, 8, 10], value=2) | |
iface = gr.Interface(fn=upscale_image, inputs = [gr.Image(label="Input Image", interactive=True), radio_input], outputs = gr.Image(label="Upscaled Image", format="png"), title="Image Upscaler") | |
app.launch(share=True) |