File size: 12,528 Bytes
e2425fb
 
 
 
 
 
 
 
 
 
 
889acde
e2425fb
 
 
 
 
0b53109
 
 
 
e2425fb
 
1b416c9
9ee2324
e2425fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
665a378
 
0496224
e2425fb
5cdcae7
 
 
 
 
 
 
e2425fb
 
5cdcae7
 
 
 
 
19a32aa
5cdcae7
e2425fb
44e8b2a
0496224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2425fb
 
 
 
0496224
e2425fb
 
 
0496224
e2425fb
 
 
 
 
 
 
 
0496224
 
 
e2425fb
0496224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b416c9
0496224
 
089f39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e2425fb
 
 
 
2ac6e98
 
e2425fb
 
 
 
 
 
 
 
 
 
1b416c9
ebcdd4e
e2425fb
ccd1bf1
 
3a1dbf3
300e1a9
 
 
e2425fb
 
1c15978
 
e2425fb
 
 
 
 
 
 
 
1c61f8e
e2425fb
0ea48b1
e2425fb
678a412
e2425fb
d8807c7
e2425fb
e4ff917
0ea48b1
e2425fb
 
 
85e5ac0
 
e2425fb
 
 
 
 
 
1c15978
e4ff917
1c15978
e4ff917
e2425fb
0ea48b1
e2425fb
 
0ea48b1
e2425fb
0ea48b1
e2425fb
 
85e5ac0
e2425fb
85e5ac0
e2425fb
 
85e5ac0
e2425fb
d6cc10d
5160b2e
 
 
 
e2425fb
0ea48b1
 
eeb002a
e2425fb
1c61f8e
5160b2e
1c61f8e
fe435a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import gradio as gr
import requests
import time
import json
from contextlib import closing
from websocket import create_connection
from deep_translator import GoogleTranslator
from langdetect import detect
import os
from PIL import Image
import io
from io import BytesIO
import base64
import re
from gradio_client import Client
from fake_useragent import UserAgent
import random
from theme import theme
from fastapi import FastAPI

app = FastAPI()


def query(prompt, negative_prompt, task, steps, sampler, cfg_scale, seed, width, height):
    result = {"prompt": prompt,"negative_prompt": negative_prompt,"task": task,"steps": steps,"sampler": sampler,"cfg_scale": cfg_scale,"seed": seed, "width": width, "height": height}
    print(result)
    try:
        language = detect(prompt)
        if language == 'ru':
            prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
            print(prompt)
    except:
        pass

    prompt = re.sub(r'[^a-zA-Zа-яА-Я\s]', '', prompt)
    
    cfg = int(cfg_scale)
    steps = int(steps)
    seed = int(seed)

    width = 896
    height = 1152

    if task == "Playground v2":
        ua = UserAgent()
        headers = {
            'user-agent': f'{ua.random}'
        }
        client = Client("https://ashrafb-arpr.hf.space/", headers=headers)
        result = client.predict(prompt, fn_index=0)
        return result
            
    if task == "Artigen v3":
        ua = UserAgent()
        headers = {
            'user-agent': f'{ua.random}'
        }
        client = Client("https://ashrafb-arv3s.hf.space/", headers=headers)
        result = client.predict(prompt,0,"Cinematic", fn_index=0)
        return result
    try:
        with closing(create_connection("wss://google-sdxl.hf.space/queue/join")) as conn:
            conn.send('{"fn_index":3,"session_hash":""}')
            conn.send(f'{{"data":["{prompt}, 4k photo","[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry",7.5,"(No style)"],"event_data":null,"fn_index":3,"session_hash":""}}')
            c = 0
            while c < 60:
                status = json.loads(conn.recv())['msg']
                if status == 'estimation':
                    c += 1
                    time.sleep(1)
                    continue
                if status == 'process_starts':
                    break
            photo = json.loads(conn.recv())['output']['data'][0][0]
            photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
            photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
            return photo
    except:
        try:
            ua = UserAgent()
            headers = {
                'authority': 'ehristoforu-dalle-3-xl-lora-v2.hf.space',
                'accept': 'text/event-stream',
                'accept-language': 'ru,en;q=0.9,la;q=0.8,ja;q=0.7',
                'cache-control': 'no-cache',
                'referer': 'https://ehristoforu-dalle-3-xl-lora-v2.hf.space/?__theme=light',
                'sec-ch-ua': '"Not_A Brand";v="8", "Chromium";v="120", "YaBrowser";v="24.1", "Yowser";v="2.5"',
                'sec-ch-ua-mobile': '?0',
                'sec-ch-ua-platform': '"Windows"',
                'sec-fetch-dest': 'empty',
                'sec-fetch-mode': 'cors',
                'sec-fetch-site': 'same-origin',
                'user-agent': f'{ua.random}'
            }
            client = Client("ehristoforu/dalle-3-xl-lora-v2", headers=headers)
            result = client.predict(prompt,"(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",True,0,1024,1024,6,True, api_name='/run')
            return result[0][0]['image']
        except:
            try:
                ua = UserAgent()
                headers = {
                    'authority': 'nymbo-sd-xl.hf.space',
                    'accept': 'text/event-stream',
                    'accept-language': 'ru,en;q=0.9,la;q=0.8,ja;q=0.7',
                    'cache-control': 'no-cache',
                    'referer': 'https://nymbo-sd-xl.hf.space/?__theme=light',
                    'sec-ch-ua': '"Not_A Brand";v="8", "Chromium";v="120", "YaBrowser";v="24.1", "Yowser";v="2.5"',
                    'sec-ch-ua-mobile': '?0',
                    'sec-ch-ua-platform': '"Windows"',
                    'sec-fetch-dest': 'empty',
                    'sec-fetch-mode': 'cors',
                    'sec-fetch-site': 'same-origin',
                    'user-agent': f'{ua.random}'
                }
                client = Client("Nymbo/SD-XL", headers=headers)
                result = client.predict(prompt,negative_prompt,"","",True,False,False,0,896,1152,7,1,25,25,False,api_name="/run")
                return result
            except:
                try:
                    ua = UserAgent()
                    headers = {
                        'authority': 'radames-real-time-text-to-image-sdxl-lightning.hf.space',
                        'accept': 'text/event-stream',
                        'accept-language': 'ru,en;q=0.9,la;q=0.8,ja;q=0.7',
                        'cache-control': 'no-cache',
                        'referer': 'https://radames-real-time-text-to-image-sdxl-lightning.hf.space/?__theme=light',
                        'sec-ch-ua': '"Not_A Brand";v="8", "Chromium";v="120", "YaBrowser";v="24.1", "Yowser";v="2.5"',
                        'sec-ch-ua-mobile': '?0',
                        'sec-ch-ua-platform': '"Windows"',
                        'sec-fetch-dest': 'empty',
                        'sec-fetch-mode': 'cors',
                        'sec-fetch-site': 'same-origin',
                        'user-agent': f'{ua.random}'
                    }
                    client = Client("radames/Real-Time-Text-to-Image-SDXL-Lightning", headers=headers)
                    result = client.predict(prompt, [], 0, random.randint(1, 999999), fn_index=0)
                    return result
                except:
                    try:
                        ua = UserAgent()
                        headers = {
                            'user-agent': f'{ua.random}'
                        }
                        client = Client("https://ashrafb-arpr.hf.space/", headers=headers)
                        result = client.predict(prompt, fn_index=0)
                        return result
                    except:
                        ua = UserAgent()
                        headers = {
                            'user-agent': f'{ua.random}'
                        }
                        client = Client("https://ashrafb-arv3s.hf.space/", headers=headers)
                        result = client.predict(prompt,0,"Cinematic", fn_index=0)
                        return result
                        


def mirror(image_output, scale_by, method, gfpgan, codeformer):

    url_up = "https://darkstorm2150-protogen-web-ui.hf.space/run/predict/"
    url_up_f = "https://darkstorm2150-protogen-web-ui.hf.space/file="

    scale_by = int(scale_by)
    gfpgan = int(gfpgan)
    codeformer = int(codeformer)
    
    with open(image_output, "rb") as image_file:
        encoded_string2 = base64.b64encode(image_file.read())
        encoded_string2 = str(encoded_string2).replace("b'", '')

    encoded_string2 = "data:image/png;base64," + encoded_string2
    data = {"fn_index":81,"data":[0,0,encoded_string2,None,"","",True,gfpgan,codeformer,0,scale_by,896,1152,None,method,"None",1,False,[],"",""],"session_hash":""}
    r = requests.post(url_up, json=data, timeout=100)
    print(r.text)
    print(r.json()['data'][0][0]['name'])
    ph = "https://darkstorm2150-protogen-web-ui.hf.space/file=" + str(r.json()['data'][0][0]['name'])
    print(ph)
    response2 = requests.get(ph)
    img = Image.open(BytesIO(response2.content))
    return img

css = """
.gradio-container {background-color: MediumAquaMarine}
footer{display:none !important}
#generate {
    width: 100%;
}
#image_output {
height: 100% !important;
}
"""

with gr.Blocks(css=css, theme=theme) as app:

    with gr.Tab("Basic Settings"):
        with gr.Row():
            prompt = gr.Textbox(placeholder="Enter the image description...", show_label=True, label='Image Prompt ✍️', lines=3, show_copy_button = True)
        with gr.Row():
            task = gr.Radio(interactive=True, value="Stable Diffusion XL 1.0", show_label=True, label="Model of neural network 🧠 ", choices=['Stable Diffusion XL 1.0', 'Crystal Clear XL', 
                                                                                                              'Juggernaut XL', 'DreamShaper XL',
                                                                                                              'SDXL Niji', 'Cinemax SDXL', 'NightVision XL'])
    with gr.Tab("Extended settings"):
        with gr.Row():
            negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=True, label='Negative Prompt:', lines=3, value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry")
        with gr.Row():
            sampler = gr.Dropdown(value="DPM++ 2M Karras", show_label=True, label="Sampling Method:", choices=[
                "DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 a Karras", "DPM2 Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"])
        with gr.Row():
            steps = gr.Slider(show_label=True, label="Sampling Steps:", minimum=1, maximum=50, value=35, step=1)
        with gr.Row():
            cfg_scale = gr.Slider(show_label=True, label="CFG Scale:", minimum=1, maximum=20, value=7, step=1)
        with gr.Row():
            seed = gr.Number(show_label=True, label="Seed:", minimum=-1, maximum=1000000, value=-1, step=1)
        with gr.Row():
            width = gr.Slider(label="Width", minimum=512, maximum=2048, step=8, value=896, interactive=True,)
        with gr.Row():
            height = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1152,interactive=True,)
    
    with gr.Tab("Upscaling Settings"):
        with gr.Column():
            with gr.Row():
                scale_by = gr.Number(show_label=True, label="How many times to increase:", minimum=1, maximum=2, value=2, step=1)
            with gr.Row():
                method = gr.Dropdown(show_label=True, value="ESRGAN_4x", label="Increasing algorithm", choices=["ScuNET GAN", "SwinIR 4x", "ESRGAN_4x", "R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"])
        with gr.Column():
            with gr.Row():
                gfpgan = gr.Slider(show_label=True, label="Effect GFPGAN (For facial improvement)", minimum=0, maximum=1, value=0, step=0.1)
            with gr.Row():
                codeformer = gr.Slider(show_label=True, label="Effect CodeFormer (Improve the face)", minimum=0, maximum=1, value=0, step=0.1)
    
    with gr.Column():
        text_button = gr.Button("Generate image", variant="primary", interactive=True, elem_id="generate")
    with gr.Column():
        image_output = gr.Image(show_download_button=True, interactive=False, label='Generated Image 🌄', show_share_button=False, format="png", type="filepath", elem_id="gallery")
        
        text_button.click(query, inputs=[prompt, negative_prompt, task, steps, sampler, cfg_scale, seed, width, height], outputs=image_output, concurrency_limit=48)
        clear_prompt =gr.Button("Clear 🗑️",variant="primary", elem_id="clear_button")
        clear_prompt.click(lambda: (None, None), None, [prompt, image_output], queue=False, show_api=False)
        
        img2img_b = gr.Button("Increase the image", variant='secondary')
        image_i2i = gr.Image(show_label=True, label='Increased image:')
        img2img_b.click(mirror, inputs=[image_output, scale_by, method, gfpgan, codeformer], outputs=image_i2i, concurrency_limit=48)
    

#app.queue(default_concurrency_limit=200, max_size=200)  # <-- Sets up a queue with default parameters
if __name__ == "__main__":
    app.launch()