File size: 11,967 Bytes
e2425fb
39ac46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b53109
39ac46b
e58dba8
39ac46b
6529e9e
39ac46b
 
 
 
 
 
 
 
 
 
 
69b0ace
39ac46b
 
 
191385d
 
39ac46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69b0ace
39ac46b
 
 
e2425fb
39ac46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98448f4
 
 
 
 
 
caab276
 
 
d35a35a
caab276
 
 
 
39ac46b
8ae1893
9e19cab
e58dba8
0bf7da3
 
 
 
 
 
 
 
 
 
98448f4
caab276
e58dba8
0bf7da3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
caab276
e58dba8
caab276
d35a35a
29cfb5a
caab276
 
 
 
39ac46b
c355474
39ac46b
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
import gradio as gr
import requests
import time
import json
from contextlib import closing
from websocket import create_connection
from deep_translator import GoogleTranslator
from langdetect import detect
import os
from PIL import Image
import io
from io import BytesIO
import base64
import re
from gradio_client import Client
from fake_useragent import UserAgent
import random
from theme import theme
from fastapi import FastAPI

app = FastAPI()
@app.get("/")

def query(prompt, negative_prompt, task, steps=35, sampler="DPM++ 2M Karras", cfg_scale=7, seed=-1, width=896, height=1152):
    result = {"prompt": prompt,"negative_prompt": negative_prompt,"task": task,"steps": steps,"sampler": sampler,"cfg_scale": cfg_scale,"seed": seed, "width": width, "height": height}
    print(result)
    try:
        language = detect(prompt)
        if language == 'ru':
            prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
            print(prompt)
    except:
        pass

    prompt = re.sub(r'[^a-zA-Zа-яА-Я\s]', '', prompt)
    
    cfg = int(cfg_scale)
    steps = int(steps)
    seed = int(seed)
    width = int(width)
    height = int(height)

    if task == "Playground v2":
        ua = UserAgent()
        headers = {
            'user-agent': f'{ua.random}'
        }
        client = Client("https://ashrafb-arpr.hf.space/", headers=headers)
        result = client.predict(prompt, fn_index=0)
        return result
            
    if task == "Artigen v3":
        ua = UserAgent()
        headers = {
            'user-agent': f'{ua.random}'
        }
        client = Client("https://ashrafb-arv3s.hf.space/", headers=headers)
        result = client.predict(prompt,0,"Cinematic", fn_index=0)
        return result
    try:
        with closing(create_connection("wss://google-sdxl.hf.space/queue/join")) as conn:
            conn.send('{"fn_index":3,"session_hash":""}')
            conn.send(f'{{"data":["{prompt}, 4k photo","[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry",7.5,"(No style)"],"event_data":null,"fn_index":3,"session_hash":""}}')
            c = 0
            while c < 60:
                status = json.loads(conn.recv())['msg']
                if status == 'estimation':
                    c += 1
                    time.sleep(1)
                    continue
                if status == 'process_starts':
                    break
            photo = json.loads(conn.recv())['output']['data'][0][0]
            photo = photo.replace('data:image/jpeg;base64,', '').replace('data:image/png;base64,', '')
            photo = Image.open(io.BytesIO(base64.decodebytes(bytes(photo, "utf-8"))))
            return photo
    except:
        try:
            ua = UserAgent()
            headers = {
                'authority': 'ehristoforu-dalle-3-xl-lora-v2.hf.space',
                'accept': 'text/event-stream',
                'accept-language': 'ru,en;q=0.9,la;q=0.8,ja;q=0.7',
                'cache-control': 'no-cache',
                'referer': 'https://ehristoforu-dalle-3-xl-lora-v2.hf.space/?__theme=light',
                'sec-ch-ua': '"Not_A Brand";v="8", "Chromium";v="120", "YaBrowser";v="24.1", "Yowser";v="2.5"',
                'sec-ch-ua-mobile': '?0',
                'sec-ch-ua-platform': '"Windows"',
                'sec-fetch-dest': 'empty',
                'sec-fetch-mode': 'cors',
                'sec-fetch-site': 'same-origin',
                'user-agent': f'{ua.random}'
            }
            client = Client("ehristoforu/dalle-3-xl-lora-v2", headers=headers)
            result = client.predict(prompt,"(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",True,0,1024,1024,6,True, api_name='/run')
            return result[0][0]['image']
        except:
            try:
                ua = UserAgent()
                headers = {
                    'authority': 'nymbo-sd-xl.hf.space',
                    'accept': 'text/event-stream',
                    'accept-language': 'ru,en;q=0.9,la;q=0.8,ja;q=0.7',
                    'cache-control': 'no-cache',
                    'referer': 'https://nymbo-sd-xl.hf.space/?__theme=light',
                    'sec-ch-ua': '"Not_A Brand";v="8", "Chromium";v="120", "YaBrowser";v="24.1", "Yowser";v="2.5"',
                    'sec-ch-ua-mobile': '?0',
                    'sec-ch-ua-platform': '"Windows"',
                    'sec-fetch-dest': 'empty',
                    'sec-fetch-mode': 'cors',
                    'sec-fetch-site': 'same-origin',
                    'user-agent': f'{ua.random}'
                }
                client = Client("Nymbo/SD-XL", headers=headers)
                result = client.predict(prompt,negative_prompt,"","",True,False,False,0,896,1152,7,1,25,25,False,api_name="/run")
                return result
            except:
                try:
                    ua = UserAgent()
                    headers = {
                        'authority': 'radames-real-time-text-to-image-sdxl-lightning.hf.space',
                        'accept': 'text/event-stream',
                        'accept-language': 'ru,en;q=0.9,la;q=0.8,ja;q=0.7',
                        'cache-control': 'no-cache',
                        'referer': 'https://radames-real-time-text-to-image-sdxl-lightning.hf.space/?__theme=light',
                        'sec-ch-ua': '"Not_A Brand";v="8", "Chromium";v="120", "YaBrowser";v="24.1", "Yowser";v="2.5"',
                        'sec-ch-ua-mobile': '?0',
                        'sec-ch-ua-platform': '"Windows"',
                        'sec-fetch-dest': 'empty',
                        'sec-fetch-mode': 'cors',
                        'sec-fetch-site': 'same-origin',
                        'user-agent': f'{ua.random}'
                    }
                    client = Client("radames/Real-Time-Text-to-Image-SDXL-Lightning", headers=headers)
                    result = client.predict(prompt, [], 0, random.randint(1, 999999), fn_index=0)
                    return result
                except:
                    try:
                        ua = UserAgent()
                        headers = {
                            'user-agent': f'{ua.random}'
                        }
                        client = Client("https://ashrafb-arpr.hf.space/", headers=headers)
                        result = client.predict(prompt, fn_index=0)
                        return result
                    except:
                        ua = UserAgent()
                        headers = {
                            'user-agent': f'{ua.random}'
                        }
                        client = Client("https://ashrafb-arv3s.hf.space/", headers=headers)
                        result = client.predict(prompt,0,"Cinematic", fn_index=0)
                        return result
                        


def mirror(image_output, scale_by, method, gfpgan, codeformer):

    url_up = "https://darkstorm2150-protogen-web-ui.hf.space/run/predict/"
    url_up_f = "https://darkstorm2150-protogen-web-ui.hf.space/file="

    scale_by = int(scale_by)
    gfpgan = int(gfpgan)
    codeformer = int(codeformer)
    
    with open(image_output, "rb") as image_file:
        encoded_string2 = base64.b64encode(image_file.read())
        encoded_string2 = str(encoded_string2).replace("b'", '')

    encoded_string2 = "data:image/png;base64," + encoded_string2
    data = {"fn_index":81,"data":[0,0,encoded_string2,None,"","",True,gfpgan,codeformer,0,scale_by,896,1152,None,method,"None",1,False,[],"",""],"session_hash":""}
    r = requests.post(url_up, json=data, timeout=100)
    print(r.text)
    print(r.json()['data'][0][0]['name'])
    ph = "https://darkstorm2150-protogen-web-ui.hf.space/file=" + str(r.json()['data'][0][0]['name'])
    print(ph)
    response2 = requests.get(ph)
    img = Image.open(BytesIO(response2.content))
    return img

examples = [
    "a beautiful woman with blonde hair and blue eyes",
    "a beautiful woman with brown hair and grey eyes",
    "a beautiful woman with black hair and brown eyes",
]    

# CSS to style the app
css = """
.gradio-container {background-color: MediumAquaMarine}

footer {
    visibility: hidden;
}
"""

with gr.Blocks(css=css, theme=theme, fill_width= False) as app:
    with gr.Tab("Basic Settings"):
        with gr.Column(scale=1):
            with gr.Row():
                prompt = gr.Textbox(placeholder="Enter the image description...", show_label=True, label='Image Prompt ✍️', lines=3, scale=6, show_copy_button = True)
            with gr.Row():
                task = gr.Radio(interactive=True, value="Stable Diffusion XL 1.0", show_label=True, label="Model of neural network 🤖 ", choices=['Stable Diffusion XL 1.0', 'Crystal Clear XL', 
                                                                                                                  'Juggernaut XL', 'DreamShaper XL',
                                                                                                              'SDXL Niji', 'Cinemax SDXL', 'NightVision XL'])
            gr.Examples(
                examples = examples,    
                inputs = [prompt], 
            )
    
    with gr.Tab("Extended settings"):
        with gr.Column(scale=3):
            with gr.Row():
                negative_prompt = gr.Textbox(placeholder="Negative Prompt", show_label=True, label='Negative Prompt:', scale=6, lines=3, value="[deformed | disfigured], poorly drawn, [bad : wrong] anatomy, [extra | missing | floating | disconnected] limb, (mutated hands and fingers), blurry")
            
            with gr.Row():
                sampler = gr.Dropdown(value="DPM++ S", show_label=True, label="Sampling Method:", choices=[
                    "DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 a Karras", "DPM2 Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"])
            with gr.Row():
                steps = gr.Slider(show_label=True, label="Sampling Steps:", minimum=1, maximum=50, value=35, step=1)
            with gr.Row():
                cfg_scale = gr.Slider(show_label=True, label="CFG Scale:", minimum=1, maximum=20, value=7, step=1)
            with gr.Row():
                seed = gr.Number(show_label=True, label="Seed:", minimum=-1, maximum=1000000, value=-1, step=1)
            with gr.Row():
                width = gr.Slider(label="Width", minimum=512, maximum=2048, step=8, value=896, interactive=True,)
            with gr.Row():
                height = gr.Slider(label="Height", minimum=512, maximum=2048, step=8, value=1152,interactive=True,)
    
    with gr.Column(scale=3):
        text_button = gr.Button("Generate image", variant="primary", interactive=True, elem_id="generate")
    with gr.Column(scale=0):
        image_output = gr.Image(show_download_button=True, interactive=False, label='Generated Image 🌄', show_share_button=False, show_fullscreen_button=True, format="png", elem_id="gallery")
        
        text_button.click(query, inputs=[prompt, negative_prompt, task, steps, sampler, cfg_scale, seed, width, height], outputs=image_output, concurrency_limit=48)
        clear_prompt =gr.Button("Clear 🗑️",variant="primary", elem_id="clear_button")
        clear_prompt.click(lambda: (None, None), None, [prompt, image_output], queue=False, show_api=False)
        

app.queue(default_concurrency_limit=200, max_size=200)  # <-- Sets up a queue with default parameters
if __name__ == "__main__":
    app.launch()