Delete predict.py
Browse files- predict.py +0 -134
predict.py
DELETED
@@ -1,134 +0,0 @@
|
|
1 |
-
# Prediction interface for Cog ⚙️
|
2 |
-
# https://cog.run/python
|
3 |
-
|
4 |
-
from cog import BasePredictor, Input, Path
|
5 |
-
import os
|
6 |
-
import time
|
7 |
-
import torch
|
8 |
-
import subprocess
|
9 |
-
from PIL import Image
|
10 |
-
from typing import List
|
11 |
-
from image_datasets.canny_dataset import canny_processor, c_crop
|
12 |
-
from src.flux.util import load_ae, load_clip, load_t5, load_flow_model, load_controlnet, load_safetensors
|
13 |
-
|
14 |
-
OUTPUT_DIR = "controlnet_results"
|
15 |
-
MODEL_CACHE = "checkpoints"
|
16 |
-
CONTROLNET_URL = "https://huggingface.co/XLabs-AI/flux-controlnet-canny/resolve/main/controlnet.safetensors"
|
17 |
-
T5_URL = "https://weights.replicate.delivery/default/black-forest-labs/FLUX.1-dev/t5-cache.tar"
|
18 |
-
CLIP_URL = "https://weights.replicate.delivery/default/black-forest-labs/FLUX.1-dev/clip-cache.tar"
|
19 |
-
HF_TOKEN = "hf_..." # Your HuggingFace token
|
20 |
-
|
21 |
-
def download_weights(url, dest):
|
22 |
-
start = time.time()
|
23 |
-
print("downloading url: ", url)
|
24 |
-
print("downloading to: ", dest)
|
25 |
-
subprocess.check_call(["pget", "-xf", url, dest], close_fds=False)
|
26 |
-
print("downloading took: ", time.time() - start)
|
27 |
-
|
28 |
-
def get_models(name: str, device: torch.device, offload: bool, is_schnell: bool):
|
29 |
-
t5 = load_t5(device, max_length=256 if is_schnell else 512)
|
30 |
-
clip = load_clip(device)
|
31 |
-
model = load_flow_model(name, device="cpu" if offload else device)
|
32 |
-
ae = load_ae(name, device="cpu" if offload else device)
|
33 |
-
controlnet = load_controlnet(name, device).to(torch.bfloat16)
|
34 |
-
return model, ae, t5, clip, controlnet
|
35 |
-
|
36 |
-
class Predictor(BasePredictor):
|
37 |
-
def setup(self) -> None:
|
38 |
-
"""Load the model into memory to make running multiple predictions efficient"""
|
39 |
-
t1 = time.time()
|
40 |
-
os.system(f"huggingface-cli login --token {HF_TOKEN}")
|
41 |
-
name = "flux-dev"
|
42 |
-
self.offload = False
|
43 |
-
checkpoint = "controlnet.safetensors"
|
44 |
-
|
45 |
-
print("Checking ControlNet weights")
|
46 |
-
checkpoint = "controlnet.safetensors"
|
47 |
-
if not os.path.exists(checkpoint):
|
48 |
-
os.system(f"wget {CONTROLNET_URL}")
|
49 |
-
print("Checking T5 weights")
|
50 |
-
if not os.path.exists(MODEL_CACHE+"/models--google--t5-v1_1-xxl"):
|
51 |
-
download_weights(T5_URL, MODEL_CACHE)
|
52 |
-
print("Checking CLIP weights")
|
53 |
-
if not os.path.exists(MODEL_CACHE+"/models--openai--clip-vit-large-patch14"):
|
54 |
-
download_weights(CLIP_URL, MODEL_CACHE)
|
55 |
-
|
56 |
-
self.is_schnell = False
|
57 |
-
device = "cuda"
|
58 |
-
self.torch_device = torch.device(device)
|
59 |
-
model, ae, t5, clip, controlnet = get_models(
|
60 |
-
name,
|
61 |
-
device=self.torch_device,
|
62 |
-
offload=self.offload,
|
63 |
-
is_schnell=self.is_schnell,
|
64 |
-
)
|
65 |
-
self.ae = ae
|
66 |
-
self.t5 = t5
|
67 |
-
self.clip = clip
|
68 |
-
self.controlnet = controlnet
|
69 |
-
self.model = model.to(self.torch_device)
|
70 |
-
if '.safetensors' in checkpoint:
|
71 |
-
checkpoint1 = load_safetensors(checkpoint)
|
72 |
-
else:
|
73 |
-
checkpoint1 = torch.load(checkpoint, map_location='cpu')
|
74 |
-
|
75 |
-
controlnet.load_state_dict(checkpoint1, strict=False)
|
76 |
-
t2 = time.time()
|
77 |
-
print(f"Setup time: {t2 - t1}")
|
78 |
-
|
79 |
-
def preprocess_canny_image(self, image_path: str, width: int = 512, height: int = 512):
|
80 |
-
image = Image.open(image_path)
|
81 |
-
image = c_crop(image)
|
82 |
-
image = image.resize((width, height))
|
83 |
-
image = canny_processor(image)
|
84 |
-
return image
|
85 |
-
|
86 |
-
def predict(
|
87 |
-
self,
|
88 |
-
prompt: str = Input(description="Input prompt", default="a handsome viking man with white hair, cinematic, MM full HD"),
|
89 |
-
image: Path = Input(description="Input image", default=None),
|
90 |
-
num_inference_steps: int = Input(description="Number of inference steps", ge=1, le=64, default=28),
|
91 |
-
cfg: float = Input(description="CFG", ge=0, le=10, default=3.5),
|
92 |
-
seed: int = Input(description="Random seed", default=None)
|
93 |
-
) -> List[Path]:
|
94 |
-
"""Run a single prediction on the model"""
|
95 |
-
if seed is None:
|
96 |
-
seed = int.from_bytes(os.urandom(2), "big")
|
97 |
-
print(f"Using seed: {seed}")
|
98 |
-
|
99 |
-
# clean output dir
|
100 |
-
output_dir = "controlnet_results"
|
101 |
-
os.system(f"rm -rf {output_dir}")
|
102 |
-
|
103 |
-
input_image = str(image)
|
104 |
-
img = Image.open(input_image)
|
105 |
-
width, height = img.size
|
106 |
-
# Resize input image if it's too large
|
107 |
-
max_image_size = 1536
|
108 |
-
scale = min(max_image_size / width, max_image_size / height, 1)
|
109 |
-
if scale < 1:
|
110 |
-
width = int(width * scale)
|
111 |
-
height = int(height * scale)
|
112 |
-
print(f"Scaling image down to {width}x{height}")
|
113 |
-
img = img.resize((width, height), resample=Image.Resampling.LANCZOS)
|
114 |
-
input_image = "/tmp/resized_image.png"
|
115 |
-
img.save(input_image)
|
116 |
-
|
117 |
-
subprocess.check_call(
|
118 |
-
["python3", "main.py",
|
119 |
-
"--local_path", "controlnet.safetensors",
|
120 |
-
"--image", input_image,
|
121 |
-
"--use_controlnet",
|
122 |
-
"--control_type", "canny",
|
123 |
-
"--prompt", prompt,
|
124 |
-
"--width", str(width),
|
125 |
-
"--height", str(height),
|
126 |
-
"--num_steps", str(num_inference_steps),
|
127 |
-
"--guidance", str(cfg),
|
128 |
-
"--seed", str(seed)
|
129 |
-
], close_fds=False)
|
130 |
-
|
131 |
-
# Find the first file that begins with "controlnet_result_"
|
132 |
-
for file in os.listdir(output_dir):
|
133 |
-
if file.startswith("controlnet_result_"):
|
134 |
-
return [Path(os.path.join(output_dir, file))]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|