Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import os
|
3 |
+
import yaml
|
4 |
+
import tempfile
|
5 |
+
import subprocess
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
from src.flux.xflux_pipeline import XFluxPipeline
|
12 |
+
|
13 |
+
|
14 |
+
def list_dirs(path):
|
15 |
+
if path is None or path == "None" or path == "":
|
16 |
+
return
|
17 |
+
|
18 |
+
if not os.path.exists(path):
|
19 |
+
path = os.path.dirname(path)
|
20 |
+
if not os.path.exists(path):
|
21 |
+
return
|
22 |
+
|
23 |
+
if not os.path.isdir(path):
|
24 |
+
path = os.path.dirname(path)
|
25 |
+
|
26 |
+
def natural_sort_key(s, regex=re.compile("([0-9]+)")):
|
27 |
+
return [
|
28 |
+
int(text) if text.isdigit() else text.lower() for text in regex.split(s)
|
29 |
+
]
|
30 |
+
|
31 |
+
subdirs = [
|
32 |
+
(item, os.path.join(path, item))
|
33 |
+
for item in os.listdir(path)
|
34 |
+
if os.path.isdir(os.path.join(path, item))
|
35 |
+
]
|
36 |
+
subdirs = [
|
37 |
+
filename
|
38 |
+
for item, filename in subdirs
|
39 |
+
if item[0] != "." and item not in ["__pycache__"]
|
40 |
+
]
|
41 |
+
subdirs = sorted(subdirs, key=natural_sort_key)
|
42 |
+
if os.path.dirname(path) != "":
|
43 |
+
dirs = [os.path.dirname(path), path] + subdirs
|
44 |
+
else:
|
45 |
+
dirs = [path] + subdirs
|
46 |
+
|
47 |
+
if os.sep == "\\":
|
48 |
+
dirs = [d.replace("\\", "/") for d in dirs]
|
49 |
+
for d in dirs:
|
50 |
+
yield d
|
51 |
+
|
52 |
+
def list_train_data_dirs():
|
53 |
+
current_train_data_dir = "."
|
54 |
+
return list(list_dirs(current_train_data_dir))
|
55 |
+
|
56 |
+
def update_config(d, u):
|
57 |
+
for k, v in u.items():
|
58 |
+
if isinstance(v, dict):
|
59 |
+
d[k] = update_config(d.get(k, {}), v)
|
60 |
+
else:
|
61 |
+
# convert Gradio components to strings
|
62 |
+
if hasattr(v, 'value'):
|
63 |
+
d[k] = str(v.value)
|
64 |
+
else:
|
65 |
+
try:
|
66 |
+
d[k] = int(v)
|
67 |
+
except (TypeError, ValueError):
|
68 |
+
d[k] = str(v)
|
69 |
+
return d
|
70 |
+
|
71 |
+
def start_lora_training(
|
72 |
+
data_dir: str, output_dir: str, lr: float, steps: int, rank: int
|
73 |
+
):
|
74 |
+
inputs = {
|
75 |
+
"data_config": {
|
76 |
+
"img_dir": data_dir,
|
77 |
+
},
|
78 |
+
"output_dir": output_dir,
|
79 |
+
"learning_rate": lr,
|
80 |
+
"rank": rank,
|
81 |
+
"max_train_steps": steps,
|
82 |
+
}
|
83 |
+
|
84 |
+
if not os.path.exists(output_dir):
|
85 |
+
os.makedirs(output_dir)
|
86 |
+
print(f"Creating folder {output_dir} for the output checkpoint file...")
|
87 |
+
|
88 |
+
script_path = Path(__file__).resolve()
|
89 |
+
config_path = script_path.parent / "train_configs" / "test_lora.yaml"
|
90 |
+
with open(config_path, 'r') as file:
|
91 |
+
config = yaml.safe_load(file)
|
92 |
+
|
93 |
+
config = update_config(config, inputs)
|
94 |
+
print("Config file is updated...", config)
|
95 |
+
with tempfile.NamedTemporaryFile(mode='w', delete=False, suffix=".yaml") as temp_file:
|
96 |
+
yaml.dump(config, temp_file, default_flow_style=False)
|
97 |
+
tmp_config_path = temp_file.name
|
98 |
+
|
99 |
+
command = ["accelerate", "launch", "train_flux_lora_deepspeed.py", "--config", tmp_config_path]
|
100 |
+
result = subprocess.run(command, check=True)
|
101 |
+
|
102 |
+
# rRemove the temporary file after the command is run
|
103 |
+
Path(tmp_config_path).unlink()
|
104 |
+
|
105 |
+
return result
|
106 |
+
|
107 |
+
|
108 |
+
def create_demo(
|
109 |
+
model_type: str,
|
110 |
+
device: str = "cuda" if torch.cuda.is_available() else "cpu",
|
111 |
+
offload: bool = False,
|
112 |
+
ckpt_dir: str = "",
|
113 |
+
):
|
114 |
+
xflux_pipeline = XFluxPipeline(model_type, device, offload)
|
115 |
+
checkpoints = sorted(Path(ckpt_dir).glob("*.safetensors"))
|
116 |
+
|
117 |
+
with gr.Blocks() as demo:
|
118 |
+
gr.Markdown(f"# Flux Adapters by XLabs AI - Model: {model_type}")
|
119 |
+
with gr.Tab("Inference"):
|
120 |
+
with gr.Row():
|
121 |
+
with gr.Column():
|
122 |
+
prompt = gr.Textbox(label="Prompt", value="handsome woman in the city")
|
123 |
+
|
124 |
+
with gr.Accordion("Generation Options", open=False):
|
125 |
+
with gr.Row():
|
126 |
+
width = gr.Slider(512, 2048, 1024, step=16, label="Width")
|
127 |
+
height = gr.Slider(512, 2048, 1024, step=16, label="Height")
|
128 |
+
neg_prompt = gr.Textbox(label="Negative Prompt", value="bad photo")
|
129 |
+
with gr.Row():
|
130 |
+
num_steps = gr.Slider(1, 50, 25, step=1, label="Number of steps")
|
131 |
+
timestep_to_start_cfg = gr.Slider(1, 50, 1, step=1, label="timestep_to_start_cfg")
|
132 |
+
with gr.Row():
|
133 |
+
guidance = gr.Slider(1.0, 5.0, 4.0, step=0.1, label="Guidance", interactive=True)
|
134 |
+
true_gs = gr.Slider(1.0, 5.0, 3.5, step=0.1, label="True Guidance", interactive=True)
|
135 |
+
seed = gr.Textbox(-1, label="Seed (-1 for random)")
|
136 |
+
|
137 |
+
with gr.Accordion("ControlNet Options", open=False):
|
138 |
+
control_type = gr.Dropdown(["canny", "hed", "depth"], label="Control type")
|
139 |
+
control_weight = gr.Slider(0.0, 1.0, 0.8, step=0.1, label="Controlnet weight", interactive=True)
|
140 |
+
local_path = gr.Dropdown(checkpoints, label="Controlnet Checkpoint",
|
141 |
+
info="Local Path to Controlnet weights (if no, it will be downloaded from HF)"
|
142 |
+
)
|
143 |
+
controlnet_image = gr.Image(label="Input Controlnet Image", visible=True, interactive=True)
|
144 |
+
|
145 |
+
with gr.Accordion("LoRA Options", open=False):
|
146 |
+
lora_weight = gr.Slider(0.0, 1.0, 0.9, step=0.1, label="LoRA weight", interactive=True)
|
147 |
+
lora_local_path = gr.Dropdown(
|
148 |
+
checkpoints, label="LoRA Checkpoint", info="Local Path to Lora weights"
|
149 |
+
)
|
150 |
+
|
151 |
+
with gr.Accordion("IP Adapter Options", open=False):
|
152 |
+
image_prompt = gr.Image(label="image_prompt", visible=True, interactive=True)
|
153 |
+
ip_scale = gr.Slider(0.0, 1.0, 1.0, step=0.1, label="ip_scale")
|
154 |
+
neg_image_prompt = gr.Image(label="neg_image_prompt", visible=True, interactive=True)
|
155 |
+
neg_ip_scale = gr.Slider(0.0, 1.0, 1.0, step=0.1, label="neg_ip_scale")
|
156 |
+
ip_local_path = gr.Dropdown(
|
157 |
+
checkpoints, label="IP Adapter Checkpoint",
|
158 |
+
info="Local Path to IP Adapter weights (if no, it will be downloaded from HF)"
|
159 |
+
)
|
160 |
+
generate_btn = gr.Button("Generate")
|
161 |
+
|
162 |
+
with gr.Column():
|
163 |
+
output_image = gr.Image(label="Generated Image")
|
164 |
+
download_btn = gr.File(label="Download full-resolution")
|
165 |
+
|
166 |
+
inputs = [prompt, image_prompt, controlnet_image, width, height, guidance,
|
167 |
+
num_steps, seed, true_gs, ip_scale, neg_ip_scale, neg_prompt,
|
168 |
+
neg_image_prompt, timestep_to_start_cfg, control_type, control_weight,
|
169 |
+
lora_weight, local_path, lora_local_path, ip_local_path
|
170 |
+
]
|
171 |
+
generate_btn.click(
|
172 |
+
fn=xflux_pipeline.gradio_generate,
|
173 |
+
inputs=inputs,
|
174 |
+
outputs=[output_image, download_btn],
|
175 |
+
)
|
176 |
+
|
177 |
+
with gr.Tab("LoRA Finetuning"):
|
178 |
+
data_dir = gr.Dropdown(list_train_data_dirs(),
|
179 |
+
label="Training images (directory containing the training images)"
|
180 |
+
)
|
181 |
+
output_dir = gr.Textbox(label="Output Path", value="lora_checkpoint")
|
182 |
+
|
183 |
+
with gr.Accordion("Training Options", open=True):
|
184 |
+
lr = gr.Textbox(label="Learning Rate", value="1e-5")
|
185 |
+
steps = gr.Slider(10000, 20000, 20000, step=100, label="Train Steps")
|
186 |
+
rank = gr.Slider(1, 100, 16, step=1, label="LoRa Rank")
|
187 |
+
|
188 |
+
training_btn = gr.Button("Start training")
|
189 |
+
training_btn.click(
|
190 |
+
fn=start_lora_training,
|
191 |
+
inputs=[data_dir, output_dir, lr, steps, rank],
|
192 |
+
outputs=[],
|
193 |
+
)
|
194 |
+
|
195 |
+
|
196 |
+
return demo
|
197 |
+
|
198 |
+
if __name__ == "__main__":
|
199 |
+
import argparse
|
200 |
+
parser = argparse.ArgumentParser(description="Flux")
|
201 |
+
parser.add_argument("--name", type=str, default="flux-dev", help="Model name")
|
202 |
+
parser.add_argument("--device", type=str, default="cuda" if torch.cuda.is_available() else "cpu", help="Device to use")
|
203 |
+
parser.add_argument("--offload", action="store_true", help="Offload model to CPU when not in use")
|
204 |
+
parser.add_argument("--share", action="store_true", help="Create a public link to your demo")
|
205 |
+
parser.add_argument("--ckpt_dir", type=str, default=".", help="Folder with checkpoints in safetensors format")
|
206 |
+
args = parser.parse_args()
|
207 |
+
|
208 |
+
demo = create_demo(args.name, args.device, args.offload, args.ckpt_dir)
|
209 |
+
demo.launch(share=args.share)
|