import gradio as gr
import io
import random
import time
import json
import base64
import requests
import os
from mistralai import Mistral
from PIL import Image
from io import BytesIO
from deep_translator import GoogleTranslator
from datetime import datetime
from theme import theme
from fastapi import FastAPI
app = FastAPI()
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large-turbo"
API_TOKEN = os.getenv("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
timeout = 100
api_key = os.getenv("MISTRAL_API_KEY")
Mistralclient = Mistral(api_key=api_key)
def flip_image(x):
return np.fliplr(x)
def clear():
return None
# Function to query the API and return the generated image
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=896, height=1152):
if prompt == "" or prompt is None:
return None
key = random.randint(0, 999)
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
headers = {"Authorization": f"Bearer {API_TOKEN}"}
# Translate the prompt from Russian to English if necessary
prompt = GoogleTranslator(source='ru', target='en').translate(prompt)
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}')
# Add some extra flair to the prompt
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
print(f'\033[1mGeneration {key}:\033[0m {prompt}')
# Prepare the payload for the API call, including width and height
payload = {
"inputs": prompt,
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1000000000),
"strength": strength,
"parameters": {
"width": width, # Pass the width to the API
"height": height # Pass the height to the API
}
}
# Send the request to the API and handle the response
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout)
if response.status_code != 200:
print(f"Error: Failed to get image. Response status: {response.status_code}")
print(f"Response content: {response.text}")
if response.status_code == 503:
raise gr.Error(f"{response.status_code} : The model is being loaded")
raise gr.Error(f"{response.status_code}")
try:
# Convert the response content into an image
image_bytes = response.content
image = Image.open(io.BytesIO(image_bytes))
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})')
return image
except Exception as e:
print(f"Error when trying to open the image: {e}")
return None
examples = [
"a beautiful woman with blonde hair and blue eyes",
"a beautiful woman with brown hair and grey eyes",
"a beautiful woman with black hair and brown eyes",
]
def encode_image(image_path):
"""Encode the image to base64."""
try:
# Open the image file
image = Image.open(image_path).convert("RGB")
# Resize the image to a height of 512 while maintaining the aspect ratio
base_height = 512
h_percent = (base_height / float(image.size[1]))
w_size = int((float(image.size[0]) * float(h_percent)))
image = image.resize((w_size, base_height), Image.LANCZOS)
# Convert the image to a byte stream
buffered = BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
return img_str
except FileNotFoundError:
print(f"Error: The file {image_path} was not found.")
return None
except Exception as e: # Add generic exception handling
print(f"Error: {e}")
return None
def feifeichat(image):
try:
model = "pixtral-large-2411"
# Define the messages for the chat
base64_image = encode_image(image)
messages = [{
"role":
"user",
"content": [
{
"type": "text",
"text": "Please provide a detailed description of this photo"
},
{
"type": "image_url",
"image_url": f"data:image/jpeg;base64,{base64_image}"
},
],
"stream": False,
}]
partial_message = ""
for chunk in Mistralclient.chat.stream(model=model, messages=messages):
if chunk.data.choices[0].delta.content is not None:
partial_message = partial_message + chunk.data.choices[
0].delta.content
yield partial_message
except Exception as e: # 添加通用异常处理
print(f"Error: {e}")
return "Please upload a photo"
# CSS to style the app
css = """
.gradio-container {background-color: MediumAquaMarine}
footer{display:none !important}
#app-container {
max-width: 930px;
margin-left: auto;
margin-right: auto;
}
"""
# Build the Gradio UI with Blocks
with gr.Blocks(theme=theme, css=css) as app:
# Add a title to the app
gr.HTML("
🎨 Stable Diffusion 3.5 Large Turbo + 🇬🇧
")
#Set tabs
with gr.Tabs() as tabs:
with gr.TabItem(label="🖼 Image To Prompt 📄", visible=True):
with gr.Row():
with gr.Column():
input_img = gr.Image(label="Input Picture 🖼️",height=320,type="filepath")
submit_btn = gr.Button(value="Submit", variant='primary')
with gr.Column():
output_text = gr.Textbox(label="Flux Prompt ✍️", show_copy_button = True)
clr_button =gr.Button("Clear 🗑️ ",variant="primary", elem_id="clear_button")
clr_button.click(lambda: (None, None), None, [input_img, output_text], queue=False, show_api=False)
submit_btn.click(feifeichat, [input_img], [output_text])
with gr.TabItem("✍️ Text to Image 🖼", visible=True):
# Container for all the UI elements
with gr.Column(elem_id="app-container"):
# Add a text input for the main prompt
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Group():
with gr.Row():
text_prompt = gr.Textbox(label="Image Prompt ✍️", placeholder="Enter a prompt here", lines=2, show_copy_button = True, elem_id="prompt-text-input")
# Accordion for advanced settings
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", lines=4, placeholder="What should not be in the image", value="(hands:-1.25), physical-defects:2, unhealthy-deformed-joints:2, unhealthy-hands:2, out of frame, bad face, (bad-image-v2-39000:1.3), (((out of frame))), deformed body features, poor facial details, (poorly drawn face:1.3), jpeg artifacts, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2)")
with gr.Row():
width = gr.Slider(label="ImageWidth", value=896, minimum=64, maximum=1216, step=32)
height = gr.Slider(label="Image Height", value=1152, minimum=64, maximum=1216, step=32)
steps = gr.Slider(label="Sampling steps", value=50, minimum=1, maximum=100, step=1)
cfg = gr.Slider(label="CFG Scale", value=3.5, minimum=1, maximum=20, step=1)
strength = gr.Slider(label="PromptStrength", value=100, minimum=0, maximum=100, step=1)
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # Setting the seed to -1 will make it random
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 a Karras", "DPM2 Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"])
# Add a button to trigger the image generation
with gr.Row():
text_button = gr.Button("Generate Image 🎨", variant='primary', elem_id="gen-button")
clear_prompt =gr.Button("Clear Prompt 🗑️",variant="primary", elem_id="clear_button")
clear_prompt.click(lambda: (None), None, [text_prompt], queue=False, show_api=False)
with gr.Column(elem_id="app-container"):
# Image output area to display the generated image
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output", format="png", show_share_button=False, elem_id="gallery")
#Clear input and output
with gr.Row():
clear_results = gr.Button(value="Clear Image 🗑️", variant="primary", elem_id="clear_button")
clear_results.click(lambda: (None), None, [image_output], queue=False, show_api=False)
with gr.Row():
gr.Examples(
examples = examples,
inputs = [text_prompt],
)
# Bind the button to the query function with the added width and height inputs
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)
with gr.TabItem("🔄 Flip Image", visible=False):
with gr.Row():
image_input = gr.Image(label="Upload Image", height=320, type="filepath")
image_output = gr.Image(format="png")
with gr.Row():
image_button = gr.Button("Run", variant='primary')
image_button.click(flip_image, inputs=image_input, outputs=image_output)
with gr.Row():
clear_results = gr.Button(value="Clear Image", variant="primary", elem_id="clear_button")
clear_results.click(lambda: (None, None), None, [image_input, image_output])
with gr.TabItem("ℹ️ Tips", visible=True):
with gr.Column():
with gr.Row():
with gr.Column():
gr.Markdown(
"""
How to Use
- Add an image to generate a prompt, this is optional.
- If using an image to prompt, copy the prompt and paste into the prompt on tab 2
- Enter a detailed description of the image you want to create.
- Adjust advanced settings if desired (tap to expand).
- Tap "Generate Image" and wait for your creation!
Tip: Be specific in your description for best results!
*Note: Some LoRA models will not work every time (not sure why), refresh the page and try again
**I'm still playing around to try to sort the issue, feel free to let me know if you find a fix**
"""
)
app.queue(default_concurrency_limit=200, max_size=200) # <-- Sets up a queue with default parameters
if __name__ == "__main__":
app.launch(show_api=False, share=False)