Spaces:
Running
Running
import gradio as gr | |
import io | |
import random | |
import time | |
import json | |
import base64 | |
import requests | |
import os | |
from mistralai import Mistral | |
from PIL import Image | |
from io import BytesIO | |
from deep_translator import GoogleTranslator | |
from datetime import datetime | |
from theme import theme | |
from fastapi import FastAPI | |
app = FastAPI() | |
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-3.5-large" | |
API_TOKEN = os.getenv("HF_READ_TOKEN") | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
timeout = 100 | |
api_key = os.getenv("MISTRAL_API_KEY") | |
Mistralclient = Mistral(api_key=api_key) | |
def flip_image(x): | |
return np.fliplr(x) | |
def clear(): | |
return None | |
# Function to query the API and return the generated image | |
def query(prompt, is_negative=False, steps=35, cfg_scale=7, sampler="DPM++ 2M Karras", seed=-1, strength=0.7, width=896, height=1152): | |
if prompt == "" or prompt is None: | |
return None | |
key = random.randint(0, 999) | |
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")]) | |
headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
# Translate the prompt from Russian to English if necessary | |
prompt = GoogleTranslator(source='ru', target='en').translate(prompt) | |
print(f'\033[1mGeneration {key} translation:\033[0m {prompt}') | |
# Add some extra flair to the prompt | |
prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect." | |
print(f'\033[1mGeneration {key}:\033[0m {prompt}') | |
# Prepare the payload for the API call, including width and height | |
payload = { | |
"inputs": prompt, | |
"is_negative": is_negative, | |
"steps": steps, | |
"cfg_scale": cfg_scale, | |
"seed": seed if seed != -1 else random.randint(1, 1000000000), | |
"strength": strength, | |
"parameters": { | |
"width": width, # Pass the width to the API | |
"height": height # Pass the height to the API | |
} | |
} | |
# Send the request to the API and handle the response | |
response = requests.post(API_URL, headers=headers, json=payload, timeout=timeout) | |
if response.status_code != 200: | |
print(f"Error: Failed to get image. Response status: {response.status_code}") | |
print(f"Response content: {response.text}") | |
if response.status_code == 503: | |
raise gr.Error(f"{response.status_code} : The model is being loaded") | |
raise gr.Error(f"{response.status_code}") | |
try: | |
# Convert the response content into an image | |
image_bytes = response.content | |
image = Image.open(io.BytesIO(image_bytes)) | |
print(f'\033[1mGeneration {key} completed!\033[0m ({prompt})') | |
return image | |
except Exception as e: | |
print(f"Error when trying to open the image: {e}") | |
return None | |
examples = [ | |
"a beautiful woman with blonde hair and blue eyes", | |
"a beautiful woman with brown hair and grey eyes", | |
"a beautiful woman with black hair and brown eyes", | |
] | |
def encode_image(image_path): | |
"""Encode the image to base64.""" | |
try: | |
# Open the image file | |
image = Image.open(image_path).convert("RGB") | |
# Resize the image to a height of 512 while maintaining the aspect ratio | |
base_height = 512 | |
h_percent = (base_height / float(image.size[1])) | |
w_size = int((float(image.size[0]) * float(h_percent))) | |
image = image.resize((w_size, base_height), Image.LANCZOS) | |
# Convert the image to a byte stream | |
buffered = BytesIO() | |
image.save(buffered, format="JPEG") | |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8") | |
return img_str | |
except FileNotFoundError: | |
print(f"Error: The file {image_path} was not found.") | |
return None | |
except Exception as e: # Add generic exception handling | |
print(f"Error: {e}") | |
return None | |
def feifeichat(image): | |
try: | |
model = "pixtral-large-2411" | |
# Define the messages for the chat | |
base64_image = encode_image(image) | |
messages = [{ | |
"role": | |
"user", | |
"content": [ | |
{ | |
"type": "text", | |
"text": "Please provide a detailed description of this photo" | |
}, | |
{ | |
"type": "image_url", | |
"image_url": f"data:image/jpeg;base64,{base64_image}" | |
}, | |
], | |
"stream": False, | |
}] | |
partial_message = "" | |
for chunk in Mistralclient.chat.stream(model=model, messages=messages): | |
if chunk.data.choices[0].delta.content is not None: | |
partial_message = partial_message + chunk.data.choices[ | |
0].delta.content | |
yield partial_message | |
except Exception as e: # 添加通用异常处理 | |
print(f"Error: {e}") | |
return "Please upload a photo" | |
# CSS to style the app | |
css = """ | |
.gradio-container {background-color: MediumAquaMarine} | |
footer{display:none !important} | |
#app-container { | |
max-width: 930px; | |
margin-left: auto; | |
margin-right: auto; | |
} | |
""" | |
# Gradio Interface | |
with gr.Blocks(css=css, theme=theme) as app: | |
gr.HTML("<h1><center>Stable Diffusion Lab</center></h1>") | |
gr.HTML("<center>Using Stable Diffusion 3.5 Large Turbo</center>") | |
with gr.Tab(label="Image To Prompt"): | |
with gr.Row(): | |
with gr.Column(scale=4, min_width=300): | |
input_img = gr.Image(label="Input Picture", type="filepath") | |
with gr.Column(scale=3): | |
output_text = gr.Textbox(label="Flux Prompt", lines=2, scale=6, show_copy_button = True) | |
submit_btn = gr.Button(value="Generate Pompt", scale=4, variant='primary') | |
clear_prompt =gr.Button("Clear 🗑️",variant="primary", elem_id="clear_button") | |
clear_prompt.click(lambda: (None, None), None, [input_img, output_text], queue=False, show_api=False) | |
submit_btn.click(feifeichat, [input_img], [output_text]) | |
with gr.Tab(label="Generate Image"): | |
with gr.Row(): | |
with gr.Column(scale=4): | |
with gr.Row(): | |
img_output = gr.Image(type="pil", label="Image Output", show_share_button=False, format="png", elem_id="gallery") | |
with gr.Row(): | |
text_prompt = gr.Textbox(label="Image Prompt ✍️", placeholder="Enter prompt...", lines=2, scale=6, show_copy_button = True, elem_id="prompt-text-input") | |
text_button = gr.Button("Generate Image",scale=1, variant='primary', elem_id="gen-button") | |
clear_prompt =gr.Button("Clear 🗑️",variant="primary", elem_id="clear_button") | |
clear_prompt.click(lambda: (None, None), None, [text_prompt, img_output], queue=False, show_api=False) | |
with gr.Accordion("Advanced Options", open=True): | |
with gr.Column(scale=1): | |
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="( (((hands:-1.25))), physical-defects:2, unhealthy-deformed-joints:2, unhealthy-hands:2, out of frame, (((bad face))), (bad-image-v2-39000:1.3), (((out of frame))), deformed body features, (((poor facial details))), (poorly drawn face:1.3), jpeg artifacts, (missing arms:1.1), (missing legs:1.1), (extra arms:1.2), (extra legs:1.2), [asymmetrical features], warped expressions, distorted eyes ", lines=6, elem_id="negative-prompt-text-input") | |
width = gr.Slider( | |
label="Width", | |
minimum=512, | |
maximum=1280, | |
step=8, | |
value=896, | |
) | |
height = gr.Slider( | |
label="Height", | |
minimum=512, | |
maximum=1280, | |
step=8, | |
value=1152, | |
) | |
method = gr.Dropdown(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ 2S a Karras", "DPM2 a Karras", "DPM2 Karras", "DPM++ SDE Karras", "DEIS", "LMS", "DPM Adaptive", "DPM++ 2M", "DPM2 Ancestral", "DPM++ S", "DPM++ SDE", "DDPM", "DPM Fast", "dpmpp_2s_ancestral", "Euler", "Euler CFG PP", "Euler a", "Euler Ancestral", "Euler+beta", "Heun", "Heun PP2", "DDIM", "LMS Karras", "PLMS", "UniPC", "UniPC BH2"]) | |
steps = gr.Slider( | |
label="Sampling steps", | |
minimum=1, | |
maximum=100, | |
step=1, | |
value=24, | |
) | |
cfg = gr.Slider( | |
label="CFG Scale", | |
minimum=3.5, | |
maximum=7, | |
step=0.1, | |
value=3.5, | |
) | |
strength = gr.Slider(label="Strength", value=90, minimum=0, maximum=100, step=10) | |
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) | |
gr.Examples( | |
examples = examples, | |
inputs = [text_prompt], | |
) | |
# Bind the button to the query function with the added width and height inputs | |
text_button.click(query, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=img_output) | |
with gr.Tab("ℹ️ Tips"): | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown( | |
""" | |
<div style="max-width: 650px; margin: 2rem auto; padding: 1rem; border-radius: 10px; background-color: #f0f0f0;"> | |
<h2 style="float: left; font-size: 1.5rem; margin-bottom: 1rem;">How to Use</h2> | |
<ol style="padding-left: 1.5rem;"> | |
<li>Add an image to generate a prompt, this is optional.</li> | |
<li>If using an image to prompt, copy the prompt and paste into the prompt on tab 2</li> | |
<li>Enter a detailed description of the image you want to create.</li> | |
<li>Adjust advanced settings if desired (tap to expand).</li> | |
<li>Tap "Generate Image" and wait for your creation!</li> | |
</ol> | |
<p style="margin-top: 1rem; font-style: italic;">Tip: Be specific in your description for best results!</p> | |
<p style="margin-top: 1rem; font-style: italic;">*Note: Some LoRA models will not work every time (not sure why), refresh the page and try again</p> | |
<p style="margin-top: 1rem; font-style: italic;">*I'm still playing around to try to sort the issue, feel free to let me know if you find a fix</p> | |
</div> | |
""" | |
) | |
app.queue(default_concurrency_limit=200, max_size=200) # <-- Sets up a queue with default parameters | |
if __name__ == "__main__": | |
app.launch(show_api=False, share=False) | |