File size: 10,831 Bytes
c69a273
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "68e2dccb-3f52-4ea3-bf1d-8732641daefa",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import hashlib\n",
    "from PIL import Image\n",
    "import cv2\n",
    "import pandas\n",
    "import numpy as np\n",
    "import matplotlib.pyplot as plt\n",
    "import os\n",
    "import shutil\n",
    "import random\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b5f7e8cb-1c1e-423a-b7c5-68a41c3eeec3",
   "metadata": {},
   "outputs": [],
   "source": [
    "#REMOVE DUPLICATE IMAGES\n",
    "def calculate_hash(image_path):\n",
    "\n",
    "    #Calculate the hash of an image.\n",
    "    with Image.open(image_path) as img:\n",
    "        img = img.convert(\"RGB\")  # Ensure the image is in RGB format\n",
    "        img = img.resize((8, 8))  # Resize to reduce size and create hash\n",
    "        hash_value = hashlib.md5(img.tobytes()).hexdigest()  # Create hash\n",
    "    return hash_value\n",
    "\n",
    "def find_and_remove_duplicates(folder_path):\n",
    "\n",
    "    #Find and remove duplicate images in a given folder.\n",
    "\n",
    "    #If cannot find path/ folder, Print that it does not exist\n",
    "    if not os.path.exists(folder_path):\n",
    "\n",
    "        print(f\"The folder '{folder_path}' may not exist.\")\n",
    "        return\n",
    "\n",
    "    print(f\"Scanning folder: {folder_path}\")\n",
    "\n",
    "    hashes = {}\n",
    "    duplicates = []\n",
    "\n",
    "    for filename in os.listdir(folder_path):# for each file in the folder\n",
    "\n",
    "        if filename.lower().endswith(('.png', '.jpg', '.jpeg', '.gif', '.bmp')):# if file is an image\n",
    "\n",
    "            file_path = os.path.join(folder_path, filename) #generate a path to the specific image\n",
    "\n",
    "            img_hash = calculate_hash(file_path)\n",
    "\n",
    "            if img_hash in hashes:\n",
    "                duplicates.append(file_path)  # Found a duplicate\n",
    "                print(f\"Duplicate found: {file_path} (duplicate of {hashes[img_hash]})\")\n",
    "            else:\n",
    "                hashes[img_hash] = file_path\n",
    "\n",
    "    # Remove duplicates\n",
    "    for duplicate in duplicates:\n",
    "\n",
    "        os.remove(duplicate)\n",
    "        print(f\"Removed duplicate: {duplicate}\")\n",
    "\n",
    "    if not duplicates:\n",
    "        print(\"No duplicates found.\")\n",
    "\n",
    "if __name__ == '__main__':\n",
    "    folder = input(\"Enter the path to the folder containing photos: \")\n",
    "    find_and_remove_duplicates(folder)\n",
    "    \n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "73265e47-6308-4802-be5c-8eb953148d63",
   "metadata": {},
   "outputs": [],
   "source": [
    "#convert all images to jpg format\n",
    "def convert_images(folder):\n",
    "    # Loop through the image folder directory\n",
    "    for filename in os.listdir(folder):\n",
    "        # Check if the file is not in JPG format\n",
    "        if not filename.lower().endswith('.jpg') and filename.lower().endswith(('.png', '.gif', '.bmp', '.jpeg')):\n",
    "            input_path = os.path.join(folder, filename)\n",
    "            output_path = os.path.join(folder, f\"{os.path.splitext(filename)[0]}.jpg\") #jpg converted path\n",
    "\n",
    "            try:\n",
    "                # Open the image file\n",
    "                with Image.open(input_path) as img:\n",
    "                    # Convert the image to RGB\n",
    "                    rgb_img = img.convert('RGB')\n",
    "                    # Save image as JPG\n",
    "                    rgb_img.save(output_path, 'JPEG')\n",
    "                    print(f\"Converted {filename} to {output_path}\")\n",
    "                    # Remove the old image file\n",
    "                    os.remove(input_path)\n",
    "                    print(f\"Removed old file: {input_path}\")\n",
    "            except Exception as e:\n",
    "                print(f\"Error processing {filename}: {e}\")\n",
    "\n",
    "    print(\"Image conversion to .jpg completed.\")  # Print once after processing all images\n",
    "\n",
    "if __name__ == '__main__':\n",
    "    input_folder = input(\"Enter the path to the input folder containing images: \")\n",
    "    convert_images(input_folder)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "id": "9d4cea00-fc10-4ca4-a139-0dcd259b2767",
   "metadata": {},
   "outputs": [],
   "source": [
    "# check for corruption\n",
    "def is_corrupt(image_path):\n",
    "    try:\n",
    "        img = Image.open(image_path)\n",
    "        img.verify()  # Verify the image file\n",
    "        return False  # Image is not corrupted\n",
    "    except (IOError, SyntaxError) as e:\n",
    "        return True  # Image is corrupted\n",
    "\n",
    "def read_files_in_folder(folder_path):\n",
    "    count=0\n",
    "    for filename in os.listdir(folder_path):\n",
    "         file_path = os.path.join(folder_path, filename)\n",
    "         if is_corrupt(file_path):\n",
    "            count+=1\n",
    "            print(\"Image is corrupted:\", file_path)\n",
    "    return count\n",
    "if __name__ == '__main__':\n",
    "    input_folder = input(\"Enter the path to the input folder containing images: \")\n",
    "    is_corrupt(input_folder)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1ce74fa7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# CREATE TEST DATA\n",
    "source_directory = input(\"Enter source directory: \")\n",
    "destination_directory = input(\"Enter destinaton directory: \")\n",
    "\n",
    "#get the total number of files in the directory\n",
    "count = 0\n",
    "for file in os.listdir(source_directory):\n",
    "    all_files = file\n",
    "    count += 1\n",
    "\n",
    "#get the list of files\n",
    "all_files = os.listdir(source_directory)\n",
    "\n",
    "#get percentage of files to move and sample\n",
    "twenty_percent = count//5\n",
    "\n",
    "files_to_move = random.sample(all_files, twenty_percent)\n",
    "\n",
    "\n",
    "for each_file in files_to_move:\n",
    "    source_file = os.path.join(source_directory, each_file)\n",
    "    destination_file = os.path.join(destination_directory, each_file)\n",
    "    \n",
    "    # move the file\n",
    "    shutil.move(source_file, destination_file)  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7668aa65-2fb1-4770-9e6a-50e378f7150e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# assess the contrast quality of each image (overall distribution of pixel intensities in the image.)\n",
    "def check_histogram_quality(gray):\n",
    "    hist = cv2.calcHist([gray], [0], None, [256], [0, 256])\n",
    "    hist_sum = hist.sum()\n",
    "    hist_normalized = hist / hist_sum\n",
    "    hist_std = hist_normalized.std()\n",
    "    return hist_std\n",
    "\n",
    "# checks the sharpness level of each image by applying Laplacian algorithm\n",
    "def check_sharpness(gray):\n",
    "    return cv2.Laplacian(gray, cv2.CV_64F).var()\n",
    "\n",
    "# checks the mean variance of each image\n",
    "def check_mean_variance(gray):\n",
    "    mean_intensity = np.mean(gray)\n",
    "    variance_intensity = np.var(gray)\n",
    "    return mean_intensity, variance_intensity\n",
    "\n",
    "# Returns result based on the quality of each image\n",
    "def check_image_quality(folder):\n",
    "    results = []  # Collect results for all images\n",
    "    for filename in os.listdir(folder):\n",
    "        if filename.lower().endswith('.jpg'):\n",
    "            image_path = os.path.join(folder, filename)\n",
    "            print(f\"Processing: {filename}\") \n",
    "            image = cv2.imread(image_path)\n",
    "            if image is None:\n",
    "                results.append(f\"{filename}: Error: Image not found.\")\n",
    "                continue  # Skip to the next image\n",
    "\n",
    "            gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)\n",
    "\n",
    "            # Quality assessments\n",
    "            hist_std = check_histogram_quality(gray)\n",
    "            sharpness = check_sharpness(gray)\n",
    "            mean_intensity, variance_intensity = check_mean_variance(gray)\n",
    "\n",
    "            quality_issues = []\n",
    "\n",
    "            print(f\"hist_std for {image_path}: {hist_std}\")\n",
    "\n",
    "            #Histogram quality check\n",
    "            if hist_std <= 0.1:\n",
    "                quality_issues.append(\"Histogram variance is low; consider improving contrast.\")\n",
    "            \n",
    "            # Sharpness check\n",
    "            if sharpness < 100:  # Adjust as necessary\n",
    "                quality_issues.append(\"Image is blurry; consider sharpening.\")\n",
    "\n",
    "            # Mean intensity check\n",
    "            if mean_intensity <= 50:\n",
    "                quality_issues.append(\"Image may be underexposed; consider brightening.\")\n",
    "            elif mean_intensity >= 200:\n",
    "                quality_issues.append(\"Image may be overexposed; consider reducing brightness.\")\n",
    "            \n",
    "            # Variance check\n",
    "            if variance_intensity < 1000:  # Adjust threshold as necessary\n",
    "                quality_issues.append(\"Image has low intensity variance; check for flat areas.\")\n",
    "\n",
    "            # Report results for this image\n",
    "            if quality_issues:\n",
    "                results.append(f\"{filename}: Image quality is not satisfactory. Issues found:\\n- \" + \"\\n- \".join(quality_issues))\n",
    "            else:\n",
    "                results.append(f\"{filename}: Image quality is good.\")\n",
    "\n",
    "    return \"\\n\".join(results)  # Return results for all images\n",
    "\n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "    input_folder = input(\"Enter the path to the input folder containing images: \")\n",
    "    result = check_image_quality(input_folder)\n",
    "    print(result)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}