UI updated
Browse files- app.py +109 -60
- styles/detectiveMag.svg +2 -2
- styles/robot.png +0 -0
- styles/style.css +62 -62
app.py
CHANGED
|
@@ -1,4 +1,6 @@
|
|
| 1 |
# imports
|
|
|
|
|
|
|
| 2 |
import streamlit as st
|
| 3 |
import tensorflow as tf
|
| 4 |
from tensorflow.keras.models import Sequential
|
|
@@ -24,6 +26,7 @@ st.markdown(
|
|
| 24 |
unsafe_allow_html=True
|
| 25 |
)
|
| 26 |
|
|
|
|
| 27 |
@st.cache_resource
|
| 28 |
def load_models():
|
| 29 |
# Load all models at once
|
|
@@ -36,7 +39,6 @@ def load_models():
|
|
| 36 |
eff_net_model, eff_net_art_model, cnn_model = load_models()
|
| 37 |
|
| 38 |
# CNN model
|
| 39 |
-
|
| 40 |
def run_cnn(img_arr):
|
| 41 |
my_model = Sequential()
|
| 42 |
my_model.add(Conv2D(
|
|
@@ -70,6 +72,7 @@ def run_cnn(img_arr):
|
|
| 70 |
prediction = my_model.predict(img_arr)
|
| 71 |
return prediction
|
| 72 |
|
|
|
|
| 73 |
def run_effNet(img_arr):
|
| 74 |
try:
|
| 75 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
|
@@ -82,6 +85,7 @@ def run_effNet(img_arr):
|
|
| 82 |
prediction = eff_net_model.predict(img_arr)
|
| 83 |
return prediction
|
| 84 |
|
|
|
|
| 85 |
def run_effNet_Art(img_arr):
|
| 86 |
try:
|
| 87 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
|
@@ -94,13 +98,14 @@ def run_effNet_Art(img_arr):
|
|
| 94 |
prediction = eff_net_art_model.predict(img_arr)
|
| 95 |
return prediction
|
| 96 |
|
|
|
|
| 97 |
def pre_process_img_effNet(image):
|
| 98 |
img = load_img(image, target_size=(300, 300)) # Resize image to model input size
|
| 99 |
img_arr = img_to_array(img) # Convert to array
|
| 100 |
img_arr = np.expand_dims(img_arr, axis=0) # Add batch dimension
|
| 101 |
result = run_effNet(img_arr)
|
| 102 |
return result
|
| 103 |
-
|
| 104 |
def pre_process_img_effNetArt(image):
|
| 105 |
img = load_img(image, target_size=(224, 224)) # Resize image to model input size
|
| 106 |
img_arr = img_to_array(img) # Convert to array
|
|
@@ -116,66 +121,110 @@ def pre_process_img(image):
|
|
| 116 |
img_arr = img_arr.reshape((1, 256, 256, 3)) # Add batch dimension
|
| 117 |
result = run_cnn(img_arr)
|
| 118 |
return result
|
| 119 |
-
# title
|
| 120 |
-
st.markdown(
|
| 121 |
-
"""<p class = "title"> AI vs REAL Image Detection </p>""",
|
| 122 |
-
unsafe_allow_html= True
|
| 123 |
-
)
|
| 124 |
-
|
| 125 |
-
# upload image
|
| 126 |
-
st.markdown(
|
| 127 |
-
"""<p class = "upload_line"> Please upload the image </p>""",
|
| 128 |
-
unsafe_allow_html= True
|
| 129 |
-
)
|
| 130 |
-
|
| 131 |
-
# introduce states
|
| 132 |
-
if "prev_image" not in st.session_state:
|
| 133 |
-
st.session_state.prev_image = None
|
| 134 |
-
if "reset_model" not in st.session_state:
|
| 135 |
-
st.session_state.reset_model = False
|
| 136 |
-
if "model_key" not in st.session_state:
|
| 137 |
-
st.session_state.model_key = "default_model_key"
|
| 138 |
-
|
| 139 |
-
user_image = st.file_uploader("png, jpg, or jpeg image", ['png', 'jpg', 'jpeg'], label_visibility='hidden')
|
| 140 |
-
if user_image != st.session_state.prev_image:
|
| 141 |
-
if st.session_state.prev_image is not None:
|
| 142 |
-
st.session_state.model_key = "reset_model_key" if st.session_state.model_key == "default_model_key" else "default_model_key"
|
| 143 |
-
st.session_state.reset_model = True
|
| 144 |
-
st.session_state.prev_image = user_image # set prev image to current image
|
| 145 |
-
|
| 146 |
-
model_name = st.selectbox(
|
| 147 |
-
'Choose a model',
|
| 148 |
-
['CNN', 'Efficientnet', 'Efficientnet Art'],
|
| 149 |
-
index=None,
|
| 150 |
-
placeholder='choose an option',
|
| 151 |
-
key=st.session_state.model_key
|
| 152 |
-
)
|
| 153 |
-
result_placeholder = st.empty()
|
| 154 |
-
|
| 155 |
-
# design animation elements
|
| 156 |
-
with open("styles/detectiveMag.svg", "r") as file:
|
| 157 |
-
svg_content_detective_Mag = file.read()
|
| 158 |
|
| 159 |
-
# First magnifying glass starts at bottom-right
|
| 160 |
-
st.markdown(
|
| 161 |
-
f"<div class='detectiveMag1' style='bottom: 0%; right: 0%;'>{svg_content_detective_Mag}</div>",
|
| 162 |
-
unsafe_allow_html=True
|
| 163 |
-
)
|
| 164 |
-
|
| 165 |
-
# Second magnifying glass starts slightly higher up the diagonal
|
| 166 |
-
st.markdown(
|
| 167 |
-
f"<div class='detectiveMag2' style='bottom: 10%; right: 10%;'>{svg_content_detective_Mag}</div>",
|
| 168 |
-
unsafe_allow_html=True
|
| 169 |
-
)
|
| 170 |
|
| 171 |
-
#
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
|
| 177 |
if user_image is not None and model_name is not None:
|
| 178 |
predictions = []
|
|
|
|
| 179 |
if model_name == 'CNN':
|
| 180 |
print('CNN is running')
|
| 181 |
predictions = pre_process_img(user_image)
|
|
@@ -187,14 +236,14 @@ if user_image is not None and model_name is not None:
|
|
| 187 |
predictions = pre_process_img_effNetArt(user_image)
|
| 188 |
|
| 189 |
if predictions[0] < 0.5:
|
| 190 |
-
result_word = "
|
| 191 |
else:
|
| 192 |
result_word = "REAL"
|
| 193 |
|
|
|
|
| 194 |
if user_image is not None:
|
| 195 |
if len(predictions) > 0:
|
| 196 |
-
result_placeholder.markdown(f"<div class='result'> <span class = 'prediction'>Prediction: {predictions[0][0]}</span> <br> It is a <span class = resultword> {result_word} </span> image. </div>", unsafe_allow_html=True)
|
| 197 |
-
|
| 198 |
|
| 199 |
print(model_name)
|
| 200 |
print(predictions[0])
|
|
|
|
| 1 |
# imports
|
| 2 |
+
import base64
|
| 3 |
+
import os
|
| 4 |
import streamlit as st
|
| 5 |
import tensorflow as tf
|
| 6 |
from tensorflow.keras.models import Sequential
|
|
|
|
| 26 |
unsafe_allow_html=True
|
| 27 |
)
|
| 28 |
|
| 29 |
+
# load model weights
|
| 30 |
@st.cache_resource
|
| 31 |
def load_models():
|
| 32 |
# Load all models at once
|
|
|
|
| 39 |
eff_net_model, eff_net_art_model, cnn_model = load_models()
|
| 40 |
|
| 41 |
# CNN model
|
|
|
|
| 42 |
def run_cnn(img_arr):
|
| 43 |
my_model = Sequential()
|
| 44 |
my_model.add(Conv2D(
|
|
|
|
| 72 |
prediction = my_model.predict(img_arr)
|
| 73 |
return prediction
|
| 74 |
|
| 75 |
+
# efficientnet model
|
| 76 |
def run_effNet(img_arr):
|
| 77 |
try:
|
| 78 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
|
|
|
| 85 |
prediction = eff_net_model.predict(img_arr)
|
| 86 |
return prediction
|
| 87 |
|
| 88 |
+
# efficientnet art model
|
| 89 |
def run_effNet_Art(img_arr):
|
| 90 |
try:
|
| 91 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
|
|
|
| 98 |
prediction = eff_net_art_model.predict(img_arr)
|
| 99 |
return prediction
|
| 100 |
|
| 101 |
+
# preprocess images for efficient net
|
| 102 |
def pre_process_img_effNet(image):
|
| 103 |
img = load_img(image, target_size=(300, 300)) # Resize image to model input size
|
| 104 |
img_arr = img_to_array(img) # Convert to array
|
| 105 |
img_arr = np.expand_dims(img_arr, axis=0) # Add batch dimension
|
| 106 |
result = run_effNet(img_arr)
|
| 107 |
return result
|
| 108 |
+
# preprocess images for efficient net art
|
| 109 |
def pre_process_img_effNetArt(image):
|
| 110 |
img = load_img(image, target_size=(224, 224)) # Resize image to model input size
|
| 111 |
img_arr = img_to_array(img) # Convert to array
|
|
|
|
| 121 |
img_arr = img_arr.reshape((1, 256, 256, 3)) # Add batch dimension
|
| 122 |
result = run_cnn(img_arr)
|
| 123 |
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
+
#UI
|
| 127 |
+
|
| 128 |
+
#title
|
| 129 |
+
col1, col2, col3,col4, col5 = st.columns([4,1,3,3,1], gap="small")
|
| 130 |
+
|
| 131 |
+
# In the first column, display the image
|
| 132 |
+
with col1:
|
| 133 |
+
st.write('')
|
| 134 |
+
with col2:
|
| 135 |
+
st.image("styles/robot.png")
|
| 136 |
+
|
| 137 |
+
# In the second column, display the text
|
| 138 |
+
with col3:
|
| 139 |
+
st.markdown(
|
| 140 |
+
"""
|
| 141 |
+
<p class="title"> AI vs REAL Image Detection </p>
|
| 142 |
+
""",
|
| 143 |
+
unsafe_allow_html=True
|
| 144 |
+
)
|
| 145 |
+
with col4:
|
| 146 |
+
st.write('')
|
| 147 |
+
with col5:
|
| 148 |
+
st.write('')
|
| 149 |
+
|
| 150 |
+
# division between photo and other widget component
|
| 151 |
+
main_col_one, main_col_two = st.columns([2,2], gap="large")
|
| 152 |
+
#photo column
|
| 153 |
+
with main_col_one:
|
| 154 |
+
# Create a placeholder for the image
|
| 155 |
+
image_placeholder = st.empty()
|
| 156 |
+
|
| 157 |
+
with main_col_two:
|
| 158 |
+
with open("styles/detectiveMag.svg", "r") as file:
|
| 159 |
+
svg_content_detective_Mag = file.read()
|
| 160 |
+
|
| 161 |
+
#alignment between magnifying glass image and upload line
|
| 162 |
+
col1, col2, col3,col4 = st.columns([4,4,1,3], gap="small")
|
| 163 |
+
with col1:
|
| 164 |
+
st.write('')
|
| 165 |
+
with col2:
|
| 166 |
+
st.markdown(
|
| 167 |
+
"""<p class = "upload_line"> Please upload the image </p>""",
|
| 168 |
+
unsafe_allow_html= True
|
| 169 |
+
)
|
| 170 |
+
with col3:
|
| 171 |
+
st.markdown(
|
| 172 |
+
f"<div class='detectiveMag1' style='bottom: 0%; right: 0%;'>{svg_content_detective_Mag}</div>",
|
| 173 |
+
unsafe_allow_html=True
|
| 174 |
+
)
|
| 175 |
+
with col4:
|
| 176 |
+
st.write('')
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
# introduce states
|
| 181 |
+
if "prev_image" not in st.session_state:
|
| 182 |
+
st.session_state.prev_image = None
|
| 183 |
+
if "reset_model" not in st.session_state:
|
| 184 |
+
st.session_state.reset_model = False
|
| 185 |
+
if "model_key" not in st.session_state:
|
| 186 |
+
st.session_state.model_key = "default_model_key"
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
# Upload image widget
|
| 191 |
+
user_image = st.file_uploader("png, jpg, or jpeg image", ['png', 'jpg', 'jpeg'], label_visibility='hidden')
|
| 192 |
+
|
| 193 |
+
if user_image:
|
| 194 |
+
# Convert the image to base64 encoding
|
| 195 |
+
image_bytes = user_image.read()
|
| 196 |
+
image_base64 = base64.b64encode(image_bytes).decode('utf-8')
|
| 197 |
+
|
| 198 |
+
# Display the image centered using HTML
|
| 199 |
+
image_placeholder.markdown(
|
| 200 |
+
f'<div style="display: flex; justify-content: center;">'
|
| 201 |
+
f'<img src="data:image/jpeg;base64,{image_base64}" max-width:"100%" height:"auto"/>'
|
| 202 |
+
f'</div>',
|
| 203 |
+
unsafe_allow_html=True
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
# model name select box widget reset condition. reset model name when a new image is uploaded
|
| 207 |
+
if user_image != st.session_state.prev_image:
|
| 208 |
+
if st.session_state.prev_image is not None:
|
| 209 |
+
st.session_state.model_key = "reset_model_key" if st.session_state.model_key == "default_model_key" else "default_model_key"
|
| 210 |
+
st.session_state.reset_model = True
|
| 211 |
+
st.session_state.prev_image = user_image # set prev image to current image
|
| 212 |
+
|
| 213 |
+
# model name select box widget
|
| 214 |
+
model_name = st.selectbox(
|
| 215 |
+
'Choose a model',
|
| 216 |
+
['CNN', 'Efficientnet', 'Efficientnet Art'],
|
| 217 |
+
index=None,
|
| 218 |
+
placeholder='choose an option',
|
| 219 |
+
key=st.session_state.model_key
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
+
# placeholder to display result
|
| 223 |
+
result_placeholder = st.empty()
|
| 224 |
|
| 225 |
if user_image is not None and model_name is not None:
|
| 226 |
predictions = []
|
| 227 |
+
# preprocess image and run the user selected model
|
| 228 |
if model_name == 'CNN':
|
| 229 |
print('CNN is running')
|
| 230 |
predictions = pre_process_img(user_image)
|
|
|
|
| 236 |
predictions = pre_process_img_effNetArt(user_image)
|
| 237 |
|
| 238 |
if predictions[0] < 0.5:
|
| 239 |
+
result_word = "AI Generated"
|
| 240 |
else:
|
| 241 |
result_word = "REAL"
|
| 242 |
|
| 243 |
+
# display the result and the prediction
|
| 244 |
if user_image is not None:
|
| 245 |
if len(predictions) > 0:
|
| 246 |
+
result_placeholder.markdown(f"<div class='result'> <span class = 'prediction'>Prediction: {predictions[0][0]:.2%}</span> <br> It is a <span class = resultword> {result_word} </span> image. </div>", unsafe_allow_html=True)
|
|
|
|
| 247 |
|
| 248 |
print(model_name)
|
| 249 |
print(predictions[0])
|
styles/detectiveMag.svg
CHANGED
|
|
|
|
styles/robot.png
ADDED
|
styles/style.css
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
/* Reset and global styles */
|
| 2 |
* {
|
| 3 |
-
margin: 0;
|
| 4 |
box-sizing: border-box;
|
| 5 |
-
background-color: #001220 !important;
|
|
|
|
|
|
|
| 6 |
}
|
| 7 |
|
| 8 |
html,
|
|
@@ -16,12 +17,24 @@ body {
|
|
| 16 |
/* Title Styling */
|
| 17 |
.title {
|
| 18 |
font-family: "Segoe UI", Tahoma, Geneva, Verdana, sans-serif;
|
| 19 |
-
font-size:
|
| 20 |
text-align: center;
|
| 21 |
-
background: linear-gradient(to right, #
|
| 22 |
-webkit-background-clip: text;
|
| 23 |
-webkit-text-fill-color: transparent;
|
| 24 |
-
margin: 0 !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
}
|
| 26 |
|
| 27 |
/* Upload Line */
|
|
@@ -32,6 +45,31 @@ body {
|
|
| 32 |
color: white;
|
| 33 |
margin: 1em 0;
|
| 34 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
@keyframes blink {
|
| 36 |
25% {
|
| 37 |
opacity: 0.5;
|
|
@@ -44,23 +82,13 @@ body {
|
|
| 44 |
}
|
| 45 |
}
|
| 46 |
/* Base styles for magnifying glasses */
|
| 47 |
-
.detectiveMag1
|
| 48 |
-
.detectiveMag2,
|
| 49 |
-
.detectiveMag3 {
|
| 50 |
-
position: fixed;
|
| 51 |
width: 10vw;
|
| 52 |
max-width: 100px;
|
| 53 |
max-height: 100px;
|
| 54 |
animation: blink 6s infinite linear;
|
| 55 |
}
|
| 56 |
|
| 57 |
-
.detectiveMag2 {
|
| 58 |
-
animation-delay: 2s;
|
| 59 |
-
}
|
| 60 |
-
|
| 61 |
-
.detectiveMag3 {
|
| 62 |
-
animation-delay: 4s;
|
| 63 |
-
}
|
| 64 |
|
| 65 |
/* Result Styling */
|
| 66 |
.result {
|
|
@@ -76,10 +104,10 @@ body {
|
|
| 76 |
text-transform: uppercase;
|
| 77 |
background-image: linear-gradient(
|
| 78 |
-225deg,
|
| 79 |
-
#
|
| 80 |
-
#
|
| 81 |
-
#
|
| 82 |
-
#
|
| 83 |
);
|
| 84 |
background-size: auto auto;
|
| 85 |
background-clip: border-box;
|
|
@@ -115,43 +143,19 @@ body {
|
|
| 115 |
.upload_line {
|
| 116 |
font-size: 0.9rem;
|
| 117 |
}
|
| 118 |
-
|
| 119 |
-
.detectiveMag1,
|
| 120 |
-
.detectiveMag2,
|
| 121 |
-
.detectiveMag3 {
|
| 122 |
-
width: 12vw; /* Slightly larger magnifying glasses */
|
| 123 |
-
}
|
| 124 |
-
|
| 125 |
.result {
|
| 126 |
font-size: 1.2rem;
|
| 127 |
}
|
| 128 |
}
|
| 129 |
|
| 130 |
-
@media (max-width: 924px) {
|
| 131 |
-
.detectiveMag1,
|
| 132 |
-
.detectiveMag2,
|
| 133 |
-
.detectiveMag3 {
|
| 134 |
-
width: 10vw; /* Larger magnifying glasses */
|
| 135 |
-
background-color: transparent !important;
|
| 136 |
-
}
|
| 137 |
-
}
|
| 138 |
-
|
| 139 |
@media (max-width: 768px) {
|
| 140 |
.title {
|
| 141 |
font-size: 1.5em;
|
| 142 |
}
|
| 143 |
-
|
| 144 |
.upload_line {
|
| 145 |
font-size: 0.8rem;
|
| 146 |
}
|
| 147 |
|
| 148 |
-
.detectiveMag1,
|
| 149 |
-
.detectiveMag2,
|
| 150 |
-
.detectiveMag3 {
|
| 151 |
-
width: 15vw; /* Larger magnifying glasses */
|
| 152 |
-
background-color: transparent !important;
|
| 153 |
-
}
|
| 154 |
-
|
| 155 |
.result {
|
| 156 |
font-size: 1rem;
|
| 157 |
}
|
|
@@ -159,27 +163,23 @@ body {
|
|
| 159 |
|
| 160 |
@media (max-width: 480px) {
|
| 161 |
.title {
|
| 162 |
-
font-size:
|
| 163 |
-
}
|
| 164 |
-
.upload_line {
|
| 165 |
-
font-size: 0.7rem;
|
| 166 |
-
}
|
| 167 |
-
|
| 168 |
-
.detectiveMag1,
|
| 169 |
-
.detectiveMag2,
|
| 170 |
-
.detectiveMag3 {
|
| 171 |
-
width: 20vw; /* Even larger magnifying glasses */
|
| 172 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 173 |
|
| 174 |
.result {
|
| 175 |
font-size: 0.9rem;
|
| 176 |
}
|
| 177 |
}
|
| 178 |
-
|
| 179 |
-
@media (max-width: 390px) {
|
| 180 |
-
.detectiveMag1,
|
| 181 |
-
.detectiveMag2,
|
| 182 |
-
.detectiveMag3 {
|
| 183 |
-
visibility: hidden;
|
| 184 |
-
}
|
| 185 |
-
}
|
|
|
|
| 1 |
/* Reset and global styles */
|
| 2 |
* {
|
|
|
|
| 3 |
box-sizing: border-box;
|
| 4 |
+
/* background-color: #001220 !important; */
|
| 5 |
+
background-color:#0f0f31 !important;
|
| 6 |
+
|
| 7 |
}
|
| 8 |
|
| 9 |
html,
|
|
|
|
| 17 |
/* Title Styling */
|
| 18 |
.title {
|
| 19 |
font-family: "Segoe UI", Tahoma, Geneva, Verdana, sans-serif;
|
| 20 |
+
font-size: 32px; /* Scalable font size */
|
| 21 |
text-align: center;
|
| 22 |
+
background: linear-gradient(to right, #5af9fb 0%, #1C6DF3 100%);
|
| 23 |
-webkit-background-clip: text;
|
| 24 |
-webkit-text-fill-color: transparent;
|
| 25 |
+
margin-top: 0 !important;
|
| 26 |
+
|
| 27 |
+
}
|
| 28 |
+
/* robot image */
|
| 29 |
+
.st-emotion-cache-1xf0csu {
|
| 30 |
+
max-width: 55px !important;
|
| 31 |
+
}
|
| 32 |
+
|
| 33 |
+
/* main container */
|
| 34 |
+
.stMainBlockContainer {
|
| 35 |
+
padding-left: 5rem;
|
| 36 |
+
padding-right: 5rem;
|
| 37 |
+
max-width: 100%;
|
| 38 |
}
|
| 39 |
|
| 40 |
/* Upload Line */
|
|
|
|
| 45 |
color: white;
|
| 46 |
margin: 1em 0;
|
| 47 |
}
|
| 48 |
+
|
| 49 |
+
/* upload image widget customization */
|
| 50 |
+
.stFileUploader span, button {
|
| 51 |
+
color: white !important; /* Set the font color to white */
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
.stSelectbox label {
|
| 55 |
+
color: white;
|
| 56 |
+
}
|
| 57 |
+
.stSelectbox > div div {
|
| 58 |
+
color: white;
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
/* select box widget customization*/
|
| 62 |
+
.st-cf {
|
| 63 |
+
color: white !important;
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
.stSelectbox div[data-baseweb="select"] > div:first-child {
|
| 67 |
+
border-color: #2d408d;
|
| 68 |
+
}
|
| 69 |
+
.st-emotion-cache-sy3zga {
|
| 70 |
+
color: white !important;
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
@keyframes blink {
|
| 74 |
25% {
|
| 75 |
opacity: 0.5;
|
|
|
|
| 82 |
}
|
| 83 |
}
|
| 84 |
/* Base styles for magnifying glasses */
|
| 85 |
+
.detectiveMag1{
|
|
|
|
|
|
|
|
|
|
| 86 |
width: 10vw;
|
| 87 |
max-width: 100px;
|
| 88 |
max-height: 100px;
|
| 89 |
animation: blink 6s infinite linear;
|
| 90 |
}
|
| 91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
/* Result Styling */
|
| 94 |
.result {
|
|
|
|
| 104 |
text-transform: uppercase;
|
| 105 |
background-image: linear-gradient(
|
| 106 |
-225deg,
|
| 107 |
+
#8ad8e6 0%,
|
| 108 |
+
#a438f2 29%,
|
| 109 |
+
#ff007f 67%,
|
| 110 |
+
#e8a7c8 100%
|
| 111 |
);
|
| 112 |
background-size: auto auto;
|
| 113 |
background-clip: border-box;
|
|
|
|
| 143 |
.upload_line {
|
| 144 |
font-size: 0.9rem;
|
| 145 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
.result {
|
| 147 |
font-size: 1.2rem;
|
| 148 |
}
|
| 149 |
}
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
@media (max-width: 768px) {
|
| 152 |
.title {
|
| 153 |
font-size: 1.5em;
|
| 154 |
}
|
|
|
|
| 155 |
.upload_line {
|
| 156 |
font-size: 0.8rem;
|
| 157 |
}
|
| 158 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 159 |
.result {
|
| 160 |
font-size: 1rem;
|
| 161 |
}
|
|
|
|
| 163 |
|
| 164 |
@media (max-width: 480px) {
|
| 165 |
.title {
|
| 166 |
+
font-size: 16px !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
}
|
| 168 |
+
/* robot image */
|
| 169 |
+
.st-emotion-cache-1xf0csu {
|
| 170 |
+
display: none;
|
| 171 |
+
}
|
| 172 |
+
.upload_line {
|
| 173 |
+
margin:0rem !important;
|
| 174 |
+
}
|
| 175 |
+
.detectiveMag1{
|
| 176 |
+
display: none;
|
| 177 |
+
}
|
| 178 |
+
.st-emotion-cache-ocqkz7 {
|
| 179 |
+
gap: 0 !important;
|
| 180 |
+
}
|
| 181 |
|
| 182 |
.result {
|
| 183 |
font-size: 0.9rem;
|
| 184 |
}
|
| 185 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|