ff98 commited on
Commit
9b6883d
·
1 Parent(s): 1c34016

caching updated

Browse files
Files changed (1) hide show
  1. app.py +3 -5
app.py CHANGED
@@ -31,7 +31,7 @@ cnn_model = 'CNN_model_weight/model_weights.weights.h5'
31
 
32
  # CNN model
33
 
34
-
35
  def run_cnn(img_arr):
36
  my_model = Sequential()
37
  my_model.add(Conv2D(
@@ -65,7 +65,7 @@ def run_cnn(img_arr):
65
  prediction = my_model.predict(img_arr)
66
  return prediction
67
 
68
-
69
  def run_effNet(img_arr):
70
  try:
71
  resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
@@ -78,6 +78,7 @@ def run_effNet(img_arr):
78
  prediction = eff_net_model.predict(img_arr)
79
  return prediction
80
 
 
81
  def run_effNet_Art(img_arr):
82
  try:
83
  resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
@@ -90,7 +91,6 @@ def run_effNet_Art(img_arr):
90
  prediction = eff_net_art_model.predict(img_arr)
91
  return prediction
92
 
93
- @st.cache_resource
94
  def pre_process_img_effNet(image):
95
  img = load_img(image, target_size=(300, 300)) # Resize image to model input size
96
  img_arr = img_to_array(img) # Convert to array
@@ -98,7 +98,6 @@ def pre_process_img_effNet(image):
98
  result = run_effNet(img_arr)
99
  return result
100
 
101
- @st.cache_resource
102
  def pre_process_img_effNetArt(image):
103
  img = load_img(image, target_size=(224, 224)) # Resize image to model input size
104
  img_arr = img_to_array(img) # Convert to array
@@ -107,7 +106,6 @@ def pre_process_img_effNetArt(image):
107
  return result
108
 
109
  # preprocess image for cnn
110
- @st.cache_resource
111
  def pre_process_img(image):
112
  # Load and preprocess the image
113
  input_picture = load_img(image, target_size=(256, 256))
 
31
 
32
  # CNN model
33
 
34
+ @st.cache_resource
35
  def run_cnn(img_arr):
36
  my_model = Sequential()
37
  my_model.add(Conv2D(
 
65
  prediction = my_model.predict(img_arr)
66
  return prediction
67
 
68
+ @st.cache_resource
69
  def run_effNet(img_arr):
70
  try:
71
  resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
 
78
  prediction = eff_net_model.predict(img_arr)
79
  return prediction
80
 
81
+ @st.cache_resource
82
  def run_effNet_Art(img_arr):
83
  try:
84
  resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
 
91
  prediction = eff_net_art_model.predict(img_arr)
92
  return prediction
93
 
 
94
  def pre_process_img_effNet(image):
95
  img = load_img(image, target_size=(300, 300)) # Resize image to model input size
96
  img_arr = img_to_array(img) # Convert to array
 
98
  result = run_effNet(img_arr)
99
  return result
100
 
 
101
  def pre_process_img_effNetArt(image):
102
  img = load_img(image, target_size=(224, 224)) # Resize image to model input size
103
  img_arr = img_to_array(img) # Convert to array
 
106
  return result
107
 
108
  # preprocess image for cnn
 
109
  def pre_process_img(image):
110
  # Load and preprocess the image
111
  input_picture = load_img(image, target_size=(256, 256))