caching updated
Browse files
app.py
CHANGED
@@ -31,7 +31,7 @@ cnn_model = 'CNN_model_weight/model_weights.weights.h5'
|
|
31 |
|
32 |
# CNN model
|
33 |
|
34 |
-
|
35 |
def run_cnn(img_arr):
|
36 |
my_model = Sequential()
|
37 |
my_model.add(Conv2D(
|
@@ -65,7 +65,7 @@ def run_cnn(img_arr):
|
|
65 |
prediction = my_model.predict(img_arr)
|
66 |
return prediction
|
67 |
|
68 |
-
|
69 |
def run_effNet(img_arr):
|
70 |
try:
|
71 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
@@ -78,6 +78,7 @@ def run_effNet(img_arr):
|
|
78 |
prediction = eff_net_model.predict(img_arr)
|
79 |
return prediction
|
80 |
|
|
|
81 |
def run_effNet_Art(img_arr):
|
82 |
try:
|
83 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
@@ -90,7 +91,6 @@ def run_effNet_Art(img_arr):
|
|
90 |
prediction = eff_net_art_model.predict(img_arr)
|
91 |
return prediction
|
92 |
|
93 |
-
@st.cache_resource
|
94 |
def pre_process_img_effNet(image):
|
95 |
img = load_img(image, target_size=(300, 300)) # Resize image to model input size
|
96 |
img_arr = img_to_array(img) # Convert to array
|
@@ -98,7 +98,6 @@ def pre_process_img_effNet(image):
|
|
98 |
result = run_effNet(img_arr)
|
99 |
return result
|
100 |
|
101 |
-
@st.cache_resource
|
102 |
def pre_process_img_effNetArt(image):
|
103 |
img = load_img(image, target_size=(224, 224)) # Resize image to model input size
|
104 |
img_arr = img_to_array(img) # Convert to array
|
@@ -107,7 +106,6 @@ def pre_process_img_effNetArt(image):
|
|
107 |
return result
|
108 |
|
109 |
# preprocess image for cnn
|
110 |
-
@st.cache_resource
|
111 |
def pre_process_img(image):
|
112 |
# Load and preprocess the image
|
113 |
input_picture = load_img(image, target_size=(256, 256))
|
|
|
31 |
|
32 |
# CNN model
|
33 |
|
34 |
+
@st.cache_resource
|
35 |
def run_cnn(img_arr):
|
36 |
my_model = Sequential()
|
37 |
my_model.add(Conv2D(
|
|
|
65 |
prediction = my_model.predict(img_arr)
|
66 |
return prediction
|
67 |
|
68 |
+
@st.cache_resource
|
69 |
def run_effNet(img_arr):
|
70 |
try:
|
71 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
|
|
78 |
prediction = eff_net_model.predict(img_arr)
|
79 |
return prediction
|
80 |
|
81 |
+
@st.cache_resource
|
82 |
def run_effNet_Art(img_arr):
|
83 |
try:
|
84 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
|
|
91 |
prediction = eff_net_art_model.predict(img_arr)
|
92 |
return prediction
|
93 |
|
|
|
94 |
def pre_process_img_effNet(image):
|
95 |
img = load_img(image, target_size=(300, 300)) # Resize image to model input size
|
96 |
img_arr = img_to_array(img) # Convert to array
|
|
|
98 |
result = run_effNet(img_arr)
|
99 |
return result
|
100 |
|
|
|
101 |
def pre_process_img_effNetArt(image):
|
102 |
img = load_img(image, target_size=(224, 224)) # Resize image to model input size
|
103 |
img_arr = img_to_array(img) # Convert to array
|
|
|
106 |
return result
|
107 |
|
108 |
# preprocess image for cnn
|
|
|
109 |
def pre_process_img(image):
|
110 |
# Load and preprocess the image
|
111 |
input_picture = load_img(image, target_size=(256, 256))
|