caching added
Browse files
app.py
CHANGED
@@ -30,6 +30,8 @@ eff_net_art_model = tf.keras.models.load_model('EfficientNet_Models/EfficientNet
|
|
30 |
cnn_model = 'CNN_model_weight/model_weights.weights.h5'
|
31 |
|
32 |
# CNN model
|
|
|
|
|
33 |
def run_cnn(img_arr):
|
34 |
my_model = Sequential()
|
35 |
my_model.add(Conv2D(
|
@@ -63,6 +65,7 @@ def run_cnn(img_arr):
|
|
63 |
prediction = my_model.predict(img_arr)
|
64 |
return prediction
|
65 |
|
|
|
66 |
def run_effNet(img_arr):
|
67 |
try:
|
68 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
@@ -75,7 +78,7 @@ def run_effNet(img_arr):
|
|
75 |
prediction = eff_net_model.predict(img_arr)
|
76 |
return prediction
|
77 |
|
78 |
-
|
79 |
def run_effNet_Art(img_arr):
|
80 |
try:
|
81 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
|
|
30 |
cnn_model = 'CNN_model_weight/model_weights.weights.h5'
|
31 |
|
32 |
# CNN model
|
33 |
+
|
34 |
+
@st.cache_resource
|
35 |
def run_cnn(img_arr):
|
36 |
my_model = Sequential()
|
37 |
my_model.add(Conv2D(
|
|
|
65 |
prediction = my_model.predict(img_arr)
|
66 |
return prediction
|
67 |
|
68 |
+
@st.cache_resource
|
69 |
def run_effNet(img_arr):
|
70 |
try:
|
71 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|
|
|
78 |
prediction = eff_net_model.predict(img_arr)
|
79 |
return prediction
|
80 |
|
81 |
+
@st.cache_resource
|
82 |
def run_effNet_Art(img_arr):
|
83 |
try:
|
84 |
resolver = tf.distribute.cluster_resolver.TPUClusterResolver()
|