Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import nemo.collections.asr as nemo_asr
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
|
|
4 |
|
5 |
asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(model_name="stt_rw_conformer_ctc_large")
|
6 |
df = pd.read_csv("amasaku_data.tsv",sep='\t')
|
@@ -12,8 +13,14 @@ def transcribe(file):
|
|
12 |
#if not audio:
|
13 |
# return {state_var: state, transcription_var: state}
|
14 |
|
15 |
-
print("filename: ",file)
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
transcription = transcription[0].lower().split()
|
18 |
transcribed_with_amasaku = []
|
19 |
for word in transcription:
|
|
|
1 |
import nemo.collections.asr as nemo_asr
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
+
from pydub import AudioSegment
|
5 |
|
6 |
asr_model = nemo_asr.models.EncDecCTCModelBPE.from_pretrained(model_name="stt_rw_conformer_ctc_large")
|
7 |
df = pd.read_csv("amasaku_data.tsv",sep='\t')
|
|
|
13 |
#if not audio:
|
14 |
# return {state_var: state, transcription_var: state}
|
15 |
|
16 |
+
#print("filename: ",file)
|
17 |
+
try:
|
18 |
+
audio = AudioSegment.from_file(file).set_frame_rate(16000).set_channels(1)
|
19 |
+
new_file_name = file.split(".")[0]+".wav"
|
20 |
+
audio.export(new_file_name,format)
|
21 |
+
except Exception as e:
|
22 |
+
print(e)
|
23 |
+
transcription= asr_model.transcribe([new_file_name])
|
24 |
transcription = transcription[0].lower().split()
|
25 |
transcribed_with_amasaku = []
|
26 |
for word in transcription:
|