Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!pip install transformers-interpret
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
3 |
+
from transformers_interpret import SequenceClassificationExplainer
|
4 |
+
model = AutoModelForSequenceClassification.from_pretrained("indobertweet-fine-tuned/pytorch_model.bin")
|
5 |
+
tokenizer = AutoTokenizer.from_pretrained("indolem/indobertweet-base-uncased")
|
6 |
+
classifier = pipeline('text-classification', model=model, tokenizer=tokenizer)
|
7 |
+
|
8 |
+
def classify(text):
|
9 |
+
text = text.strip().lower()
|
10 |
+
result = classifier(text)
|
11 |
+
yhat = result[0]['label']
|
12 |
+
return result
|
13 |
+
!pip install gradio
|
14 |
+
|
15 |
+
import gradio as gr
|
16 |
+
|
17 |
+
iface = gr.Interface(
|
18 |
+
fn=classify,
|
19 |
+
inputs=[
|
20 |
+
gr.Textbox(placeholder="Lewandowski bermain buruk sekali, Xavi benar-benar marah kepadanya", label="Enter text to classify emotions", lines=5)
|
21 |
+
],
|
22 |
+
outputs=gr.Textbox(label="Classification Result"),
|
23 |
+
title="🔮 Emotion Classification",
|
24 |
+
description="Enter a text and classify its emotions."
|
25 |
+
)
|
26 |
+
iface.launch()
|