Spaces:
Sleeping
Sleeping
File size: 4,904 Bytes
90de23d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import abc
import logging
import re
from typing import Any
import torch
from diffusers import AudioLDM2Pipeline, AutoPipelineForText2Image
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
SAMPLE_RATE = 16000
class BaseHint(BaseModel, abc.ABC):
configs: dict
hints: list = []
model: Any = None
@abc.abstractmethod
def initialize(self):
"""Initialize the hint model."""
pass
@abc.abstractmethod
def generate_hint(self, country: str, n_hints: int):
"""Generate hints.
Args:
country (str): Country name used to base the hint
n_hints (int): Number of hints that will be generated
"""
pass
class TextHint(BaseHint):
tokenizer: Any = None
def initialize(self):
logger.info(
f"""Initializing text hint with model '{self.configs["model_id"]}'"""
)
self.tokenizer = AutoTokenizer.from_pretrained(
self.configs["model_id"],
token=self.configs["hf_access_token"],
)
self.model = AutoModelForCausalLM.from_pretrained(
self.configs["model_id"],
torch_dtype=torch.float16,
token=self.configs["hf_access_token"],
).to(self.configs["device"])
logger.info("Initialization finisehd")
def generate_hint(self, country: str, n_hints: int):
logger.info(f"Generating '{n_hints}' text hints")
generation_config = GenerationConfig(
do_sample=True,
max_new_tokens=self.configs["max_output_tokens"],
top_k=self.configs["top_k"],
top_p=self.configs["top_p"],
temperature=self.configs["temperature"],
)
prompt = [
f'Describe the country "{country}" without mentioning its name\n'
for _ in range(n_hints)
]
input_ids = self.tokenizer(prompt, return_tensors="pt")
text_hints = self.model.generate(
**input_ids.to(self.configs["device"]),
generation_config=generation_config,
)
for idx, text_hint in enumerate(text_hints):
text_hint = (
self.tokenizer.decode(text_hint, skip_special_tokens=True)
.strip()
.replace(prompt[idx], "")
.strip()
)
text_hint = re.sub(
re.escape(country), "***", text_hint, flags=re.IGNORECASE
)
self.hints.append({"text": text_hint})
logger.info(f"Text hints '{n_hints}' successfully generated")
class ImageHint(BaseHint):
def initialize(self):
logger.info(
f"""Initializing image hint with model '{self.configs["model_id"]}'"""
)
self.model = AutoPipelineForText2Image.from_pretrained(
self.configs["model_id"],
# torch_dtype=torch.float16,
variant="fp16",
).to(self.configs["device"])
logger.info("Initialization finisehd")
def generate_hint(self, country: str, n_hints: int):
logger.info(f"Generating '{n_hints}' image hints")
prompt = [f"An image related to the country {country}" for _ in range(n_hints)]
img_hints = self.model(
prompt=prompt,
num_inference_steps=self.configs["num_inference_steps"],
guidance_scale=self.configs["guidance_scale"],
).images
self.hints = [{"image": img_hint} for img_hint in img_hints]
logger.info(f"Image hints '{n_hints}' successfully generated")
class AudioHint(BaseHint):
def initialize(self):
logger.info(
f"""Initializing audio hint with model '{self.configs["model_id"]}'"""
)
self.model = AudioLDM2Pipeline.from_pretrained(
self.configs["model_id"],
# torch_dtype=torch.float16, # Not working with MacOS
).to(self.configs["device"])
logger.info("Initialization finisehd")
def generate_hint(self, country: str, n_hints: int):
logger.info(f"Generating '{n_hints}' audio hints")
prompt = f"A sound that resembles the country of {country}"
negative_prompt = "Low quality"
audio_hints = self.model(
prompt,
negative_prompt=negative_prompt,
num_inference_steps=self.configs["num_inference_steps"],
audio_length_in_s=self.configs["audio_length_in_s"],
num_waveforms_per_prompt=n_hints,
).audios
for audio_hint in audio_hints:
self.hints.append(
{
"audio": audio_hint,
"sample_rate": SAMPLE_RATE,
}
)
logger.info(f"Audio hints '{n_hints}' successfully generated")
|