Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,15 +9,97 @@ import matplotlib.pyplot as plt
|
|
9 |
model = tf.keras.models.load_model("model.h5")
|
10 |
|
11 |
# Function to process audio, predict, and generate results
|
12 |
-
def process_audio(audio_file
|
13 |
try:
|
14 |
-
# Calculate total time to stop recording (inhale + exhale)
|
15 |
-
total_duration = inhale_duration + exhale_duration
|
16 |
# Load the audio file
|
17 |
y, sr = librosa.load(audio_file, sr=16000)
|
18 |
|
19 |
-
#
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
# Detect segments (e.g., using energy or silence)
|
23 |
intervals = librosa.effects.split(y, top_db=20)
|
@@ -79,17 +161,15 @@ with gr.Blocks() as demo:
|
|
79 |
gr.Markdown("### Breathe Training Application")
|
80 |
with gr.Row():
|
81 |
audio_input = gr.Audio(type="filepath", label="Upload or Record Audio")
|
82 |
-
inhale_duration_input = gr.Number(label="Inhale Duration (s)", value=5, interactive=True)
|
83 |
-
exhale_duration_input = gr.Number(label="Exhale Duration (s)", value=5, interactive=True)
|
84 |
result_output = gr.Textbox(label="Prediction Results (Table)")
|
85 |
waveform_output = gr.Image(label="Waveform with Highlighted Segments")
|
86 |
submit_button = gr.Button("Analyze")
|
87 |
|
88 |
submit_button.click(
|
89 |
fn=process_audio,
|
90 |
-
inputs=[audio_input
|
91 |
outputs=[result_output, waveform_output]
|
92 |
)
|
93 |
|
94 |
# Run the Gradio app
|
95 |
-
demo.launch()
|
|
|
9 |
model = tf.keras.models.load_model("model.h5")
|
10 |
|
11 |
# Function to process audio, predict, and generate results
|
12 |
+
def process_audio(audio_file):
|
13 |
try:
|
|
|
|
|
14 |
# Load the audio file
|
15 |
y, sr = librosa.load(audio_file, sr=16000)
|
16 |
|
17 |
+
# Detect segments (e.g., using energy or silence)
|
18 |
+
intervals = librosa.effects.split(y, top_db=20)
|
19 |
+
|
20 |
+
results = []
|
21 |
+
|
22 |
+
plt.figure(figsize=(10, 4))
|
23 |
+
librosa.display.waveshow(y, sr=sr, alpha=0.5)
|
24 |
+
|
25 |
+
# Process each segment
|
26 |
+
for i, (start, end) in enumerate(intervals):
|
27 |
+
segment = y[start:end]
|
28 |
+
duration = (end - start) / sr
|
29 |
+
|
30 |
+
# Compute the amplitude (mean absolute value)
|
31 |
+
amplitude = np.mean(np.abs(segment))
|
32 |
+
|
33 |
+
# Extract MFCC features
|
34 |
+
mfcc = librosa.feature.mfcc(y=segment, sr=sr, n_mfcc=13)
|
35 |
+
mfcc = np.mean(mfcc, axis=1).reshape(1, -1)
|
36 |
+
|
37 |
+
# Predict inhale or exhale (override with amplitude logic)
|
38 |
+
prediction = model.predict(mfcc)
|
39 |
+
label_from_model = "Inhale" if np.argmax(prediction) == 0 else "Exhale"
|
40 |
+
|
41 |
+
# Assign label based on amplitude
|
42 |
+
label = "Inhale" if amplitude > 0.05 else "Exhale" # Threshold for exhale
|
43 |
+
|
44 |
+
# Append results
|
45 |
+
results.append({
|
46 |
+
"Segment": i + 1,
|
47 |
+
"Type": label,
|
48 |
+
"Duration (s)": round(duration, 2),
|
49 |
+
"Amplitude": round(amplitude, 4)
|
50 |
+
})
|
51 |
+
|
52 |
+
# Highlight segment on waveform with swapped colors
|
53 |
+
plt.axvspan(start / sr, end / sr, color='red' if label == "Inhale" else 'blue', alpha=0.3)
|
54 |
+
|
55 |
+
# Save the waveform with highlighted segments
|
56 |
+
plt.title("Audio Waveform with Inhale/Exhale Segments")
|
57 |
+
plt.xlabel("Time (s)")
|
58 |
+
plt.ylabel("Amplitude")
|
59 |
+
plt.savefig("waveform_highlighted.png")
|
60 |
+
plt.close()
|
61 |
+
|
62 |
+
# Format results as a table
|
63 |
+
result_table = "Segment\tType\tDuration (s)\tAmplitude\n" + "\n".join(
|
64 |
+
f"{row['Segment']}\t{row['Type']}\t{row['Duration (s)']}\t{row['Amplitude']}" for row in results
|
65 |
+
)
|
66 |
+
|
67 |
+
return result_table, "waveform_highlighted.png"
|
68 |
+
|
69 |
+
except Exception as e:
|
70 |
+
return f"Error: {str(e)}", None
|
71 |
+
|
72 |
+
# Define Gradio interface
|
73 |
+
with gr.Blocks() as demo:
|
74 |
+
gr.Markdown("### Breathe Training Application")
|
75 |
+
with gr.Row():
|
76 |
+
audio_input = gr.Audio(type="filepath", label="Upload or Record Audio")
|
77 |
+
result_output = gr.Textbox(label="Prediction Results (Table)")
|
78 |
+
waveform_output = gr.Image(label="Waveform with Highlighted Segments")
|
79 |
+
submit_button = gr.Button("Analyze")
|
80 |
+
|
81 |
+
submit_button.click(
|
82 |
+
fn=process_audio,
|
83 |
+
inputs=[audio_input],
|
84 |
+
outputs=[result_output, waveform_output]
|
85 |
+
)
|
86 |
+
|
87 |
+
# Run the Gradio app
|
88 |
+
demo.launch() make user can add period of breathe in and out as they want the sum of both selection will be the time that record auto stop mport gradio as gr
|
89 |
+
import tensorflow as tf
|
90 |
+
import librosa
|
91 |
+
import librosa.display
|
92 |
+
import numpy as np
|
93 |
+
import matplotlib.pyplot as plt
|
94 |
+
|
95 |
+
# Load the pre-trained model
|
96 |
+
model = tf.keras.models.load_model("model.h5")
|
97 |
+
|
98 |
+
# Function to process audio, predict, and generate results
|
99 |
+
def process_audio(audio_file):
|
100 |
+
try:
|
101 |
+
# Load the audio file
|
102 |
+
y, sr = librosa.load(audio_file, sr=16000)
|
103 |
|
104 |
# Detect segments (e.g., using energy or silence)
|
105 |
intervals = librosa.effects.split(y, top_db=20)
|
|
|
161 |
gr.Markdown("### Breathe Training Application")
|
162 |
with gr.Row():
|
163 |
audio_input = gr.Audio(type="filepath", label="Upload or Record Audio")
|
|
|
|
|
164 |
result_output = gr.Textbox(label="Prediction Results (Table)")
|
165 |
waveform_output = gr.Image(label="Waveform with Highlighted Segments")
|
166 |
submit_button = gr.Button("Analyze")
|
167 |
|
168 |
submit_button.click(
|
169 |
fn=process_audio,
|
170 |
+
inputs=[audio_input],
|
171 |
outputs=[result_output, waveform_output]
|
172 |
)
|
173 |
|
174 |
# Run the Gradio app
|
175 |
+
demo.launch()
|